Araştırma Makalesi
BibTex RIS Kaynak Göster

THE EFFECT OF USING PHASE CHANGE MATERIALS AND EXAMINING THE ASPECT RATIO IN AN AIR-COOLED SYSTEM OF A PLATE BATTERY CONNECTED TO A SOLAR SYSTEM

Yıl 2022, , 1194 - 1211, 30.12.2022
https://doi.org/10.21923/jesd.1106646

Öz

Lithium-ion batteries are widely used in the electronics industry to store electrical energy. One of the challenges with these batteries is that they heat up during operation, which can damage the battery. For this reason, this paper simulates the cooling process of a plate-type (BTP) lithium-ion battery pack. To control the temperature of the battery (T-B), a laminar air flow and a phase change material (PCM) are used. The PCM is placed in a heat sink around the battery. This evaluation is performed temporarily for four different dimensions of the PCM pack. The hot outlet of this system is used to provide the thermal energy required for a small residential building (THE) at a mild temperature. The BTP was also simulated using COMSOL. The results show that the use of larger heat sinks can increase the maximum (MAX) and average (AVE) temperature of the battery. The minimum T-B occurs at different times for the smaller PCM heat sinks. Also, when using a heatsink with a larger PCM volume, it takes longer for the PCM to fully solidify. A BTP with 5 or 50 battery cells can provide up to 3% or 30% of the THE required for the building.

Kaynakça

  • Mert, Mehmet Selçuk, S. E. R. T. Merve, and Hatice Hande MERT. "Isıl enerji depolama sistemleri için organik faz değiştiren maddelerin mevcut durumu üzerine bir inceleme." Mühendislik Bilimleri ve Tasarım Dergisi 6.1 (2018): 161-174.
  • Gürbüz, Habib, and A. T. E. Ş. Durukan. " Egzoz gazlarını kullanan termal enerji depolama sisteminde RT35 parafin mumunun erime ve katılaşma süreçlerinin sayısal analizi " Mühendislik Bilimleri ve Tasarım Dergisi 9.2 (2021): 520-534.
  • Al-Zareer, M., Dincer, I., Rosen, M.A., 2017. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles. Journal of Power Sources 363, 291-303.
  • Almehmadi, F.A., Alqaed, S., Mustafa, J., Jamil, B., Sharifpur, M., Cheraghian, G., 2022. Combining an active method and a passive method in cooling lithium-ion batteries and using the generated heat in heating a residential unit. Journal of Energy Storage 49, 104181.
  • Alqaed, S., 2022. Effect of annual solar radiation on simple façade, double-skin facade and double-skin facade filled with phase change materials for saving energy. Sustainable Energy Technologies and Assessments 51, 101928.
  • Amalesh, T., Lakshmi Narasimhan, N., 2020. Cooling of a lithium ion battery using phase change material with air/dielectric fluid media: A numerical study. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 234(5), 722-738.
  • An, Z., Jia, L., Ding, Y., Dang, C., Li, X., 2017. A review on lithium-ion power battery thermal management technologies and thermal safety. Journal of Thermal Science 26(5), 391-412.
  • Bernardi, D., Pawlikowski, E., Newman, J., 1985. A General Energy Balance for Battery Systems. Journal of The Electrochemical Society 132(1), 5-12.
  • Bibin, C., Vijayaram, M., Suriya, V., Ganesh, R.S., Soundarraj, S., 2020. A review on thermal issues in Li-ion battery and recent advancements in battery thermal management system. Materials Today: Proceedings 33, 116-128.
  • Elsheikh, M.H., Shnawah, D.A., Sabri, M.F.M., Said, S.B.M., Hassan, M.H., Bashir, M.B.A., Mohamad, M., 2014. A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renewable and sustainable energy reviews 30, 337-355.
  • Hajatzadeh Pordanjani, A., Aghakhani, S., Afrand, M., Mahmoudi, B., Mahian, O., Wongwises, S., 2019. An updated review on application of nanofluids in heat exchangers for saving energy. Energy Conversion and Management 198, 111886.
  • Hannan, M.A., Azidin, F., Mohamed, A., 2014. Hybrid electric vehicles and their challenges: A review. Renewable and Sustainable Energy Reviews 29, 135-150.
  • Huang, Q., Li, X., Zhang, G., Deng, J., Wang, C., 2021. Thermal management of Lithium-ion battery pack through the application of flexible form-stable composite phase change materials. Applied Thermal Engineering 183, 116151.
  • Huo, Y., Rao, Z., 2015. The numerical investigation of nanofluid based cylinder battery thermal management using lattice Boltzmann method. International Journal of Heat and Mass Transfer 91, 374-384.
  • Jiang, X., Chen, Y., Meng, X., Cao, W., Liu, C., Huang, Q., Naik, N., Murugadoss, V., Huang, M., Guo, Z., 2022. The impact of electrode with carbon materials on safety performance of lithium-ion batteries: A review. Carbon.
  • Kalbasi, R., 2021. Introducing a novel heat sink comprising PCM and air - Adapted to electronic device thermal management. International Journal of Heat and Mass Transfer 169, 120914.
  • Kalbasi, R., Afrand, M., Alsarraf, J., Tran, M.-D., 2019. Studies on optimum fins number in PCM-based heat sinks. Energy 171, 1088-1099.
  • Kant, K., Shukla, A., Sharma, A., Biwole, P.H., 2017. Heat transfer study of phase change materials with graphene nano particle for thermal energy storage. Solar Energy 146, 453-463.
  • Karimi, G., Li, X., 2013. Thermal management of lithium‐ion batteries for electric vehicles. International Journal of Energy Research 37(1), 13-24.
  • Khateeb, S.A., Amiruddin, S., Farid, M., Selman, J.R., Al-Hallaj, S., 2005. Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation. Journal of power sources 142(1-2), 345-353.
  • Khateeb, S.A., Farid, M.M., Selman, J.R., Al-Hallaj, S., 2004. Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter. Journal of Power Sources 128(2), 292-307.
  • Kirad, K., Chaudhari, M., 2021. Design of cell spacing in lithium-ion battery module for improvement in cooling performance of the battery thermal management system. Journal of Power Sources 481, 229016.
  • Lopes, J.A.P., Soares, F.J., Almeida, P.M.R., 2010. Integration of electric vehicles in the electric power system. Proceedings of the IEEE 99(1), 168-183.
  • Nilsson, M., 2011. Electric vehicles. The Phenomenon of Range Anxiety.
  • Orooji, Y., Nezafat, Z., Nasrollahzadeh, M., Shafiei, N., Afsari, M., Pakzad, K., Razmjou, A., 2022. Recent advances in nanomaterial development for lithium ion-sieving technologies. Desalination 529, 115624.
  • Pesaran, A.A., 2001. Battery thermal management in EV and HEVs: issues and solutions. Battery Man 43(5), 34-49.
  • Pordanjani, A.H., Aghakhani, S., Afrand, M., Sharifpur, M., Meyer, J.P., Xu, H., Ali, H.M., Karimi, N., Cheraghian, G., 2021. Nanofluids: Physical phenomena, applications in thermal systems and the environment effects- a critical review. Journal of Cleaner Production, 128573.
  • Pordanjani, A.H., Raisi, A., Ghasemi, B., 2019. Numerical simulation of the magnetic field and Joule heating effects on force convection flow through parallel-plate microchannel in the presence of viscous dissipation effect. Numerical Heat Transfer, Part A: Applications 76(6), 499-516.
  • Qian, Z., Li, Y., Rao, Z., 2016. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Conversion and Management 126, 622-631.
  • Sanguesa, J.A., Torres-Sanz, V., Garrido, P., Martinez, F.J., Marquez-Barja, J.M., 2021. A review on electric vehicles: Technologies and challenges. Smart Cities 4(1), 372-404.
  • Shen, Z.-G., Chen, S., Liu, X., Chen, B., 2021. A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries. Renewable and Sustainable Energy Reviews 148, 111301.
  • Shi, Y., Ahmad, S., Liu, H., Lau, K.T., Zhao, J., 2021. Optimization of air-cooling technology for LiFePO4 battery pack based on deep learning. Journal of Power Sources 497, 229894.
  • Shojaei, S., Robinson, S., McGordon, A., Marco, J., 2016. Passengers vs. battery: calculation of cooling requirements in a PHEV. SAE Technical Paper.
  • Singh, L.K., Mishra, G., Sharma, A.K., Gupta, A.K., 2021. A numerical study on thermal management of a lithium-ion battery module via forced-convective air cooling. International Journal of Refrigeration.
  • Sisk, B., Aliyev, T., Zhang, Z., Jin, Z., Salami, N., Obasih, K., Rick, A., 2015. Integrating thermal and electrochemical modeling of lithium-ion batteries to optimize requirements compliance. SAE Technical Paper.
  • Sun, X., Li, Z., Wang, X., Li, C., 2019. Technology development of electric vehicles: A review. Energies 13(1), 90.
  • Tran, M.-K., Panchal, S., Khang, T.D., Panchal, K., Fraser, R., Fowler, M., 2022. Concept Review of a Cloud-Based Smart Battery Management System for Lithium-Ion Batteries: Feasibility, Logistics, and Functionality. Batteries 8(2), 19.
  • Wang, T., Tseng, K.J., Zhao, J., Wei, Z., 2014. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies. Applied Energy 134, 229-238.
  • Xie, L., Tang, C., Bi, Z., Song, M., Fan, Y., Yan, C., Li, X., Su, F., Zhang, Q., Chen, C., 2021. Hard Carbon Anodes for Next‐Generation Li‐Ion Batteries: Review and Perspective. Advanced Energy Materials 11(38), 2101650.
  • Yang, S., Ling, C., Fan, Y., Yang, Y., Tan, X., Dong, H., 2019. A review of lithium-ion battery thermal management system strategies and the evaluate criteria. International Journal of Electrochemical Science 14(7), 6077-6107.
  • Yao, M., Gan, Y., Liang, J., Dong, D., Ma, L., Liu, J., Luo, Q., Li, Y., 2021. Performance simulation of a heat pipe and refrigerant-based lithium-ion battery thermal management system coupled with electric vehicle air-conditioning. Applied Thermal Engineering 191, 116878.
  • Zhang, J., Shao, D., Jiang, L., Zhang, G., Wu, H., Day, R., Jiang, W., 2022. Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review. Renewable and Sustainable Energy Reviews 159, 112207.
  • Zhang, X., Li, Z., Luo, L., Fan, Y., Du, Z., 2022. A review on thermal management of lithium-ion batteries for electric vehicles. Energy 238, 121652.
  • Zhang, Y.S., Courtier, N.E., Zhang, Z., Liu, K., Bailey, J.J., Boyce, A.M., Richardson, G., Shearing, P.R., Kendrick, E., Brett, D.J., 2022. A Review of Lithium‐Ion Battery Electrode Drying: Mechanisms and Metrology. Advanced Energy Materials 12(2), 2102233.
  • Zichen, W., Changqing, D., 2021. A comprehensive review on thermal management systems for power lithium-ion batteries. Renewable and Sustainable Energy Reviews 139, 110685.

GÜNEŞ SİSTEMİNE BAĞLI PLAKA PİL HAVA SOĞUTMALI BİR SİSTEMDE FAZ DEĞİŞİM MALZEMELERİ KULLANILMASI VE GÖRÜNÜŞ ORANININ İNCELENMESİ ETKİSİ

Yıl 2022, , 1194 - 1211, 30.12.2022
https://doi.org/10.21923/jesd.1106646

Öz

Lityum iyon piller, elektronik endüstrisinde elektrik enerjisini depolamak için yaygın olarak kullanılmaktadır. Bu pillerin zorluklarından biri, çalışma sırasında pile zarar verebilecek şekilde ısınmalarıdır. Bu sorundan dolayı, bu yazıda plaka tipi lityum iyon pil takımının (BTP) soğutma süreci simüle edilmiştir. Pilin (T-B) sıcaklığını kontrol etmek için laminer hava akımı ve faz değiştirme malzemesi (PCM) kullanılır. PCM, pilin etrafındaki bir soğutucunun içine yerleştirilmiştir. Mevcut değerlendirme, PCM paketinin dört farklı boyutu için geçici olarak yapılır. Bu sistemin çıkış sıcaklığı, ılıman bir sıcaklıkta küçük bir konut binası için gerekli olan termal enerjiyi (THE) sağlamak için kullanılır. BTP ayrıca COMSOL kullanılarak simüle edilmiştir. Sonuçlar, daha büyük soğutucu pillerin kullanımının pilin maksimum (MAX) ve ortalama (AVE) sıcaklıklarını artırabileceğini gösterdi. Minimum T-B, daha küçük PCM soğutucusunda farklı zamanlarda meydana gelir. Ayrıca, daha büyük PCM hacmine sahip bir soğutucu kullanmak, PCM'nin tamamen katılaşması için daha uzun sürer. 5 ve 50 pil hücreli bir BTP, binanın ihtiyaç duyduğu THE'nin sırasıyla %3'ünü ve %30'unu sağlayabilir.

Kaynakça

  • Mert, Mehmet Selçuk, S. E. R. T. Merve, and Hatice Hande MERT. "Isıl enerji depolama sistemleri için organik faz değiştiren maddelerin mevcut durumu üzerine bir inceleme." Mühendislik Bilimleri ve Tasarım Dergisi 6.1 (2018): 161-174.
  • Gürbüz, Habib, and A. T. E. Ş. Durukan. " Egzoz gazlarını kullanan termal enerji depolama sisteminde RT35 parafin mumunun erime ve katılaşma süreçlerinin sayısal analizi " Mühendislik Bilimleri ve Tasarım Dergisi 9.2 (2021): 520-534.
  • Al-Zareer, M., Dincer, I., Rosen, M.A., 2017. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles. Journal of Power Sources 363, 291-303.
  • Almehmadi, F.A., Alqaed, S., Mustafa, J., Jamil, B., Sharifpur, M., Cheraghian, G., 2022. Combining an active method and a passive method in cooling lithium-ion batteries and using the generated heat in heating a residential unit. Journal of Energy Storage 49, 104181.
  • Alqaed, S., 2022. Effect of annual solar radiation on simple façade, double-skin facade and double-skin facade filled with phase change materials for saving energy. Sustainable Energy Technologies and Assessments 51, 101928.
  • Amalesh, T., Lakshmi Narasimhan, N., 2020. Cooling of a lithium ion battery using phase change material with air/dielectric fluid media: A numerical study. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 234(5), 722-738.
  • An, Z., Jia, L., Ding, Y., Dang, C., Li, X., 2017. A review on lithium-ion power battery thermal management technologies and thermal safety. Journal of Thermal Science 26(5), 391-412.
  • Bernardi, D., Pawlikowski, E., Newman, J., 1985. A General Energy Balance for Battery Systems. Journal of The Electrochemical Society 132(1), 5-12.
  • Bibin, C., Vijayaram, M., Suriya, V., Ganesh, R.S., Soundarraj, S., 2020. A review on thermal issues in Li-ion battery and recent advancements in battery thermal management system. Materials Today: Proceedings 33, 116-128.
  • Elsheikh, M.H., Shnawah, D.A., Sabri, M.F.M., Said, S.B.M., Hassan, M.H., Bashir, M.B.A., Mohamad, M., 2014. A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renewable and sustainable energy reviews 30, 337-355.
  • Hajatzadeh Pordanjani, A., Aghakhani, S., Afrand, M., Mahmoudi, B., Mahian, O., Wongwises, S., 2019. An updated review on application of nanofluids in heat exchangers for saving energy. Energy Conversion and Management 198, 111886.
  • Hannan, M.A., Azidin, F., Mohamed, A., 2014. Hybrid electric vehicles and their challenges: A review. Renewable and Sustainable Energy Reviews 29, 135-150.
  • Huang, Q., Li, X., Zhang, G., Deng, J., Wang, C., 2021. Thermal management of Lithium-ion battery pack through the application of flexible form-stable composite phase change materials. Applied Thermal Engineering 183, 116151.
  • Huo, Y., Rao, Z., 2015. The numerical investigation of nanofluid based cylinder battery thermal management using lattice Boltzmann method. International Journal of Heat and Mass Transfer 91, 374-384.
  • Jiang, X., Chen, Y., Meng, X., Cao, W., Liu, C., Huang, Q., Naik, N., Murugadoss, V., Huang, M., Guo, Z., 2022. The impact of electrode with carbon materials on safety performance of lithium-ion batteries: A review. Carbon.
  • Kalbasi, R., 2021. Introducing a novel heat sink comprising PCM and air - Adapted to electronic device thermal management. International Journal of Heat and Mass Transfer 169, 120914.
  • Kalbasi, R., Afrand, M., Alsarraf, J., Tran, M.-D., 2019. Studies on optimum fins number in PCM-based heat sinks. Energy 171, 1088-1099.
  • Kant, K., Shukla, A., Sharma, A., Biwole, P.H., 2017. Heat transfer study of phase change materials with graphene nano particle for thermal energy storage. Solar Energy 146, 453-463.
  • Karimi, G., Li, X., 2013. Thermal management of lithium‐ion batteries for electric vehicles. International Journal of Energy Research 37(1), 13-24.
  • Khateeb, S.A., Amiruddin, S., Farid, M., Selman, J.R., Al-Hallaj, S., 2005. Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation. Journal of power sources 142(1-2), 345-353.
  • Khateeb, S.A., Farid, M.M., Selman, J.R., Al-Hallaj, S., 2004. Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter. Journal of Power Sources 128(2), 292-307.
  • Kirad, K., Chaudhari, M., 2021. Design of cell spacing in lithium-ion battery module for improvement in cooling performance of the battery thermal management system. Journal of Power Sources 481, 229016.
  • Lopes, J.A.P., Soares, F.J., Almeida, P.M.R., 2010. Integration of electric vehicles in the electric power system. Proceedings of the IEEE 99(1), 168-183.
  • Nilsson, M., 2011. Electric vehicles. The Phenomenon of Range Anxiety.
  • Orooji, Y., Nezafat, Z., Nasrollahzadeh, M., Shafiei, N., Afsari, M., Pakzad, K., Razmjou, A., 2022. Recent advances in nanomaterial development for lithium ion-sieving technologies. Desalination 529, 115624.
  • Pesaran, A.A., 2001. Battery thermal management in EV and HEVs: issues and solutions. Battery Man 43(5), 34-49.
  • Pordanjani, A.H., Aghakhani, S., Afrand, M., Sharifpur, M., Meyer, J.P., Xu, H., Ali, H.M., Karimi, N., Cheraghian, G., 2021. Nanofluids: Physical phenomena, applications in thermal systems and the environment effects- a critical review. Journal of Cleaner Production, 128573.
  • Pordanjani, A.H., Raisi, A., Ghasemi, B., 2019. Numerical simulation of the magnetic field and Joule heating effects on force convection flow through parallel-plate microchannel in the presence of viscous dissipation effect. Numerical Heat Transfer, Part A: Applications 76(6), 499-516.
  • Qian, Z., Li, Y., Rao, Z., 2016. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Conversion and Management 126, 622-631.
  • Sanguesa, J.A., Torres-Sanz, V., Garrido, P., Martinez, F.J., Marquez-Barja, J.M., 2021. A review on electric vehicles: Technologies and challenges. Smart Cities 4(1), 372-404.
  • Shen, Z.-G., Chen, S., Liu, X., Chen, B., 2021. A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries. Renewable and Sustainable Energy Reviews 148, 111301.
  • Shi, Y., Ahmad, S., Liu, H., Lau, K.T., Zhao, J., 2021. Optimization of air-cooling technology for LiFePO4 battery pack based on deep learning. Journal of Power Sources 497, 229894.
  • Shojaei, S., Robinson, S., McGordon, A., Marco, J., 2016. Passengers vs. battery: calculation of cooling requirements in a PHEV. SAE Technical Paper.
  • Singh, L.K., Mishra, G., Sharma, A.K., Gupta, A.K., 2021. A numerical study on thermal management of a lithium-ion battery module via forced-convective air cooling. International Journal of Refrigeration.
  • Sisk, B., Aliyev, T., Zhang, Z., Jin, Z., Salami, N., Obasih, K., Rick, A., 2015. Integrating thermal and electrochemical modeling of lithium-ion batteries to optimize requirements compliance. SAE Technical Paper.
  • Sun, X., Li, Z., Wang, X., Li, C., 2019. Technology development of electric vehicles: A review. Energies 13(1), 90.
  • Tran, M.-K., Panchal, S., Khang, T.D., Panchal, K., Fraser, R., Fowler, M., 2022. Concept Review of a Cloud-Based Smart Battery Management System for Lithium-Ion Batteries: Feasibility, Logistics, and Functionality. Batteries 8(2), 19.
  • Wang, T., Tseng, K.J., Zhao, J., Wei, Z., 2014. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies. Applied Energy 134, 229-238.
  • Xie, L., Tang, C., Bi, Z., Song, M., Fan, Y., Yan, C., Li, X., Su, F., Zhang, Q., Chen, C., 2021. Hard Carbon Anodes for Next‐Generation Li‐Ion Batteries: Review and Perspective. Advanced Energy Materials 11(38), 2101650.
  • Yang, S., Ling, C., Fan, Y., Yang, Y., Tan, X., Dong, H., 2019. A review of lithium-ion battery thermal management system strategies and the evaluate criteria. International Journal of Electrochemical Science 14(7), 6077-6107.
  • Yao, M., Gan, Y., Liang, J., Dong, D., Ma, L., Liu, J., Luo, Q., Li, Y., 2021. Performance simulation of a heat pipe and refrigerant-based lithium-ion battery thermal management system coupled with electric vehicle air-conditioning. Applied Thermal Engineering 191, 116878.
  • Zhang, J., Shao, D., Jiang, L., Zhang, G., Wu, H., Day, R., Jiang, W., 2022. Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review. Renewable and Sustainable Energy Reviews 159, 112207.
  • Zhang, X., Li, Z., Luo, L., Fan, Y., Du, Z., 2022. A review on thermal management of lithium-ion batteries for electric vehicles. Energy 238, 121652.
  • Zhang, Y.S., Courtier, N.E., Zhang, Z., Liu, K., Bailey, J.J., Boyce, A.M., Richardson, G., Shearing, P.R., Kendrick, E., Brett, D.J., 2022. A Review of Lithium‐Ion Battery Electrode Drying: Mechanisms and Metrology. Advanced Energy Materials 12(2), 2102233.
  • Zichen, W., Changqing, D., 2021. A comprehensive review on thermal management systems for power lithium-ion batteries. Renewable and Sustainable Energy Reviews 139, 110685.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Nevzat Akkurt 0000-0001-5550-1265

Yayımlanma Tarihi 30 Aralık 2022
Gönderilme Tarihi 20 Nisan 2022
Kabul Tarihi 29 Haziran 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Akkurt, N. (2022). THE EFFECT OF USING PHASE CHANGE MATERIALS AND EXAMINING THE ASPECT RATIO IN AN AIR-COOLED SYSTEM OF A PLATE BATTERY CONNECTED TO A SOLAR SYSTEM. Mühendislik Bilimleri Ve Tasarım Dergisi, 10(4), 1194-1211. https://doi.org/10.21923/jesd.1106646