Araştırma Makalesi
BibTex RIS Kaynak Göster

BAZALTLARDA ISIL İLETKENLİK VE ISI DEPOLAMADA OLİVİNİN SERPANTİNLEŞMESİNİN ETKİSİ

Yıl 2023, , 1486 - 1495, 30.12.2023
https://doi.org/10.21923/jesd.1339002

Öz

Bu çalışmada, artan serpantinleşme oranı ile kayanın ısıl iletkenlik katsayısı, ısıl geçirgenlik ve porozitesi arasında bir ilişki gözlemlenmiş ve serpantinleşmenin nedenleri araştırılmıştır. Çalışma alanı stratigrafik açıdan farklı kot seviyelerinde bulunmakta olup, örnekleme noktalarına göre üç gruba (A1, M2 ve M3) ayrılmıştır. Ayrıca petrografik ince kesit çalışmaları ve Taramalı Elektron Mikroskobu (TEM) analizleri yapılmıştır. Mineralojik ince kesit analizleri, olivinin serpantinleşmesinin A1, M2 ve M3 bazaltları için sırasıyla ortalama % 8.25, % 24 ve % 75.5 olduğunu göstermiştir. Olivinlerdeki artan serpantinleşme oranı nedeniyle ısıl iletkenlik katsayıları ve ısıl geçirgenlik değerleri oldukça azalmıştır. TEM analizlerine göre M2 ve M3 bazaltlarında mikro çatlaklar yoğun bir şekilde bulunmaktadır. Isıl iletkenlik katsayısı ile serpantinleşme oranı ve porozite (%) arasındaki korelasyon oranı hem kuru hem de doymuş numuneler için 0.90-0.99 arasında değişmiştir. Volkan konisi ile fay hattının yakınlığı ve M3'ün stratigrafik olarak daha yüksek kotlardaki konumu serpantinleşmeye neden olan önemli faktörler olarak değerlendirilmiştir. Sonuç olarak ısı depolama malzemesi olarak kullanılan kayaçlara ait büyük ölçekli sahalarda ısıl iletkenlik ve ısıl geçirgenlik katsayılarındaki değişimler araştırılmalı ve varsa serpantinleşme gibi alterasyon ürünleri kontrol edilmelidir.

Kaynakça

  • Andreozzi, A., Buonomo. B., Manca, O., Mesolella, P., Tamburrino, S., (2012). Numerical investigation on sensible thermal energy storage with porous media for high temperature solar systems. Journal of Physics, 395
  • Benjamin Bouvry, B., Carrion, A.J.F., Banda, E.J.K., (2017). Mediterranean basin basalts as potential materials for thermal energy storage in concentrated solar plants. Solar Energy Materials and Solar Cells, 50-59.
  • Okello, D., Fonng, C.W., Niydal, O.J., (2014). An experimental investigation on the combined use of phase change material and rock particles for high temperature (350 0C) heat storage. Energy Conversion and Management, 1-8.
  • Yalçınkaya, D.Y., Günerhan, H., Hepbaşlı, A., Bayramian, H., (2022). Duyulur Isıl Enerji Depolama Sistemlerinin Enerji Yönünden İncelenmesi. Engineer and Machinery, 159-185.
  • Dıncer, I. (1999). Evaluatıon and selectıon of energy storage systems for solar thermal applıcatıons. Internatıonal Journal of Energy Research, 1017-1028.
  • Dincer, I. (2002). On thermal energy storage systems and applications in buildings. Energy and Buildings, 377–388.
  • Furnas, C.C., (1930). Heat transfer from a gas stram to e bed of broken solids-II. Industrıal and Engıneering Chemıstry, 721-731.
  • Hasnain, S.M., Smiai, M., Al-Saedi, Y., Al-Khaldi, M., (1996). Energy Research Institute-Internal Report, KACST, Riyadh, Saudi Arabia.
  • Liu, J., Chang, Z., Wang, L., Xu, J., Kuang, R., Z Wu, Z., (2020). Exploration of basalt glasses as high-temperature sensible heat storage materials. ACS OMEGA, 19236-19246.
  • Park, J-W., Park, D., Choi, B-H., Park, E-S., (2014). Analysis on heat transfer and heat loss characteristics of rock cavern thermal energy storage. Engineering Geology, 142-156.
  • Kozak, M., Kozak, Ş., (2012). Enerji Depolama Yöntemleri. Mechanical Technology, 17-29.
  • Schumann, T., (1929). Heat Transfer. A. liquid flowing through a porous prism. Journal of the Franklin Institute, 405-416.
  • Nahhas, T., Py, X., (2019). Experimental investigation of basalt rocks as storage material for high-temperature concentrated solar power plants. Renewable and Sustainable Energy Reviews, 226-235.
  • Jemmala, Y., Zari, N., (2017). Experimental characterization of siliceous rocks to be used as filler materials for air-rock packed beds thermal energy storage systems in concentrated. Solar Energy Materials and Solar Cells, 33-42.

EFFECT OF SERPENTINIZATION OF OLIVINE ON THERMAL CONDUCTIVITY AND HEAT STORAGE IN BASALTS

Yıl 2023, , 1486 - 1495, 30.12.2023
https://doi.org/10.21923/jesd.1339002

Öz

In this study, a relationship was observed between the increasing degree of serpentinization and the thermal conductivity coefficient, thermal diffusivity and porosity of the rock, and the reasons for the serpentinization were investigated. The study area is located at different stratigraphically levels and is divided into three groups (A1, M2 and M3) according to the sampling points. In addition, petrographic thin section studies and Scanning Electron Microscope (SEM) analyzes were performed. Mineralogical thin section analyzes showed that the serpentinization of olivine averaged 8.25%, 24% and 75.5% for A1, M2 and M3 basalts, respectively. Due to the increasing degree of serpentinization in olivines, the thermal conductivity coefficients and thermal diffusivity values have decreased considerably. According to SEM analysis, microcracks are intense in M2 and M3 basalts. The degree of correlation between the coefficient of thermal conductivity with the degree of serpentinization and porosity (%) varied between 0.90 and 0.99 for both dry and saturated samples. The proximity of the volcanic cone and the fault line and the stratigraphical location of M3 at higher elevations were considered as important factors causing serpentinization. As a result, changes in thermal conductivity coefficients and thermal diffusivity should be investigated in large-scale areas of rocks used as heat storage material and alteration products such as serpentinization should be checked.

Kaynakça

  • Andreozzi, A., Buonomo. B., Manca, O., Mesolella, P., Tamburrino, S., (2012). Numerical investigation on sensible thermal energy storage with porous media for high temperature solar systems. Journal of Physics, 395
  • Benjamin Bouvry, B., Carrion, A.J.F., Banda, E.J.K., (2017). Mediterranean basin basalts as potential materials for thermal energy storage in concentrated solar plants. Solar Energy Materials and Solar Cells, 50-59.
  • Okello, D., Fonng, C.W., Niydal, O.J., (2014). An experimental investigation on the combined use of phase change material and rock particles for high temperature (350 0C) heat storage. Energy Conversion and Management, 1-8.
  • Yalçınkaya, D.Y., Günerhan, H., Hepbaşlı, A., Bayramian, H., (2022). Duyulur Isıl Enerji Depolama Sistemlerinin Enerji Yönünden İncelenmesi. Engineer and Machinery, 159-185.
  • Dıncer, I. (1999). Evaluatıon and selectıon of energy storage systems for solar thermal applıcatıons. Internatıonal Journal of Energy Research, 1017-1028.
  • Dincer, I. (2002). On thermal energy storage systems and applications in buildings. Energy and Buildings, 377–388.
  • Furnas, C.C., (1930). Heat transfer from a gas stram to e bed of broken solids-II. Industrıal and Engıneering Chemıstry, 721-731.
  • Hasnain, S.M., Smiai, M., Al-Saedi, Y., Al-Khaldi, M., (1996). Energy Research Institute-Internal Report, KACST, Riyadh, Saudi Arabia.
  • Liu, J., Chang, Z., Wang, L., Xu, J., Kuang, R., Z Wu, Z., (2020). Exploration of basalt glasses as high-temperature sensible heat storage materials. ACS OMEGA, 19236-19246.
  • Park, J-W., Park, D., Choi, B-H., Park, E-S., (2014). Analysis on heat transfer and heat loss characteristics of rock cavern thermal energy storage. Engineering Geology, 142-156.
  • Kozak, M., Kozak, Ş., (2012). Enerji Depolama Yöntemleri. Mechanical Technology, 17-29.
  • Schumann, T., (1929). Heat Transfer. A. liquid flowing through a porous prism. Journal of the Franklin Institute, 405-416.
  • Nahhas, T., Py, X., (2019). Experimental investigation of basalt rocks as storage material for high-temperature concentrated solar power plants. Renewable and Sustainable Energy Reviews, 226-235.
  • Jemmala, Y., Zari, N., (2017). Experimental characterization of siliceous rocks to be used as filler materials for air-rock packed beds thermal energy storage systems in concentrated. Solar Energy Materials and Solar Cells, 33-42.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Erdoğan Timurkaynak 0000-0001-9311-539X

Kadir Karaman

Hasan Kolaylı

Yaşar Çakır Bu kişi benim

Yayımlanma Tarihi 30 Aralık 2023
Gönderilme Tarihi 7 Ağustos 2023
Kabul Tarihi 17 Ekim 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Timurkaynak, E., Karaman, K., Kolaylı, H., Çakır, Y. (2023). BAZALTLARDA ISIL İLETKENLİK VE ISI DEPOLAMADA OLİVİNİN SERPANTİNLEŞMESİNİN ETKİSİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 11(4), 1486-1495. https://doi.org/10.21923/jesd.1339002