Araştırma Makalesi
BibTex RIS Kaynak Göster

DİKİM İŞLEMİNİN ÜÇ BOYUTLU (3B), DİKİLMİŞ TEK EKSENLİ KOMPOZİTLERİN MEKANİK ÖZELLİKLERİNE ETKİLERİNİN İNCELENMESİ

Yıl 2024, , 595 - 602, 26.09.2024
https://doi.org/10.21923/jesd.1455055

Öz

Dikme işlemi kompozitin kalınlığı yönündeki darbe hasar dayanımı ya da darbe enerjisi emilimi gibi mekanik özellikleri üzerine belirlenmiş etkilere sahiptir. Bu duruma karşın dikme işleminin kompozitin düzlemi yönündeki mekanik özellikleri üzerine etkileri hala tartışılmakta ve aydınlatılması ihtiyacı duyulmaktadır. Önceki dönemlerde yapılan çalışmalarda iki eksenli karbon dokuma kumaşların dikilmesi ile üretilmiş 3B kompozitin çekme, düzlemsel kayma ve eğilme özellikleri incelenmiştir. Tek eksenli karbon dokuma kumaşlar kompozit endüstrisinde kullanılan ham maddelerin önemli bir bölümünü temsil etmektedir. Tek eksenli karbon dokuma kumaşların dikilmesi ile üretilmiş olan 3B kompozitin düzlemsel mekanik özelliklerinin incelenmesi amacı ile çalışma genişletilmiştir. Bu çalışmada, tek eksenli karbon dokuma kumaşlar ile dikilmiş ve dikilmemiş kompozitler üretilmiş ve çekme, düzlemsel kayma ve eğilme yükleri altında test edilmişlerdir. Dikme işlemi kompozitin çekme ve düzlemsel kayma modüllerini arttırırken eğilme davranışında önemli bir fark yaratamamıştır. En yüksek modül ve yük değerleri çekme testinde elde edilmiştir. Eğilme ve kayma test sonuçları sırası ile bu değerleri takip etmiştir. Bu sonucun yanı sıra dikilmiş kompozit katmanının sahip olduğu kumaş mimarisinin kompozit çekme özellikleri üzerine önemli bir etkisinin olduğu belirlenmiştir.

Teşekkür

The author would like to thanks to Mrs. Ceren Saygın and Rasa Mühendislik İnş. Ve Tic. Ltd. for providing the unidirectional carbon woven fabrics.

Kaynakça

  • American Composite Manufacturers Association/ Reinforcements, https://discovercomposites.com/what-are-composites/materials/reinforcements/index.html, 10.01.2024
  • ASTM D790. 2017. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials
  • ASTM D7078M-19. 2020. Standard Test Method for Shear Properties of Composite Materials by V-Notched Rail Shear Method.
  • Abdelal N.R. and Donaldson, S.L. 2018. Interlaminar fracture toughness and electromagnetic interference shielding of hybrid-stitched carbon fiber composites. Journal of Reinforced Plastics and Composites, vol. 37, no. 18, pp. 1131–1141.
  • Aymerich, F., Priolo, P. and Sun, C.T. 2003. Static and fatigue behaviour of stitched graphite/epoxy composite laminates. Compos Sci Technol, vol. 63, no. 6, pp. 907–917.
  • Drake, D.A., Sullivan, R.W., Lovejoy, A.E., Clay, S.B. and Jegley, D.C. 2021. Influence of stitching on the out-of-plane behavior of composite materials – A mechanistic review. Journal of Composite Materials, vol. 55, no. 23, pp. 3307–3321.
  • Heidari-Rarani, M., Bashandeh-Khodaei-Naeini, K. and Mirkhalaf, S.M. 2018. Micromechanical modeling of the mechanical behavior of unidirectional composites – A comparative study. Journal of Reinforced Plastics and Composites, vol. 37, no. 16, pp. 1051–1071.
  • Kang, T.J. and Lee, S.H. 1994. Effect of stitching on the mechanical and impact properties of woven laminate composite. J Compos Mater, vol. 28, no. 16, pp. 1574–1587.
  • Kaya, G., Soutis, C. and Potluri, P. 2022. Flexural Behaviour of Unreinforced and Z‑Fibre Reinforced 3D Carbon/Epoxy Composites. Appl Comp Mater, vol. 29, pp. 387-404.
  • Kirmasha, Y.K., Sharba, M.J., Leman, Z. and Sultan, M.T.H. 2020. Mechanical performance of unstitched and silk fiber-stitched woven kenaf fiber-reinforced Epoxy composites. Materials, vol. 13, no. 21, pp. 1–16.
  • Korkmaz, M. 2024. In and off- axes mechanical properties of three- dimensional textile reinforced carbon composites. J Compos Mater, vol. 58, no. 4, pp. 479-487.
  • Korkmaz, M. 2023. Investigation of the bending and quasi-static indentation properties of three-dimensional (3D) textile-reinforced composites. Polym Compos, vol. 45, no. 2, pp. 1703-1714.
  • Larsson, F. 1997. Damage tolerance of a stitched carbon/epoxy laminate. Composite Part A, vol. 28, no. A, pp. 923–934.
  • Lascoup, B., Aboura, Z., Khellil, K. and Benzeggagh, M. 2010. Impact response of three-dimensional stitched sandwich composite. Compos Struct, vol. 92, no. 2, pp. 347–353.
  • Li, H., Yu, Y., Xu, X., Chen, T. and Lu, W. 2021. Enhancing the fracture toughness of laminated composites through carbon
  • nanotube belt stitching. Comp Sci and Tech, vol. 204, pp. 108632.
  • Pingkarawat, K., Wang, C.H., Varley, R.J. and Mouritz, A.P. 2013. Effect of mendable polymer stitch density on the toughening and healing of delamination cracks in carbon-epoxy laminates,” Compos Part A Appl Sci Manuf, vol. 50, pp. 22–30.
  • Reis. L.M.M., Ribeiro, M.L, Madureira, F. et al. 2024. An experimental investigation of the mechanical properties and failure
  • mode of 3D stitched composites. Jour of Mater Res and Tech, vol. 29, pp. 90-100.
  • Saboktakin, A., Kalaoglu, F., Shahrooz, M., Spitas, C. and Farahat, S. 2022. Failure analysis of 3D stitched composite using multi-scale approach for aerospace structures. Journal of the Textile Institute, vol. 113, no. 5, pp. 943–951.
  • Shah Khan M.Z. and Mouritz, A.P. 1996. Fatigue Behavior of Stitched Grp Laminates, vol. 56, no. 6, pp. 695-701.
  • Tarfaoui, M., Nachtane, M. and El Moumen, A. 2019. Energy dissipation of stitched and unstitched woven composite materials during dynamic compression test. Composites Part B: Engineering, vol. 167.
  • Tan, K.T., Watanabe, N., Iwahori, Y. and Ishikawa, T. 2012. Understanding effectiveness of stitching in suppression of impact damage: An empirical delamination reduction trend for stitched composites. Compos Part A Appl Sci Manuf, vol. 43, no. 6, pp. 823–832.
  • Tan, K.T., Yoshimura, A., Watanabe, N., Iwahori, Y. and Ishikawa, T. 2013. Effect of stitch density and stitch thread thickness on damage progression and failure characteristics of stitched composites under out-of-plane loading. Compos Sci Technol, vol. 74, pp. 194–204.
  • Velicki, A. and Jegley, D. 2014. PRSEUS Structural Concept Development, in 52nd Aerospace Science Meeting, AIAA, Jan.
  • WiseTex suite - Department of Materials Engineering, [Online]. Available: https://www.mtm.kuleuven.be/english/research/scalint/cmg/software/wisetex/, 10.01.2024.
  • Xu, H., Zhang, L. and Cheng, L. 2015. The effect of Z-yarn density on the in-plane shear property of three-dimensional stitched carbon fiber reinforced silicon carbide composites. Compos Sci Technol, vol. 106, pp. 120–126.
  • Yalkin, H.E., Icten, B.M. and Alpyildiz, T. 2015. Enhanced mechanical performance of foam core sandwich composites with through the thickness reinforced core. Compos B Eng, vol. 79, pp. 383–391.

EXPLORING THE EFFECTS OF STITCHING PROCESS ON THE MECHANICAL PROPERTIES OF THREE- DIMENSIONAL (3D) STITCHED UNIDIRECTIONAL COMPOSITES

Yıl 2024, , 595 - 602, 26.09.2024
https://doi.org/10.21923/jesd.1455055

Öz

The stitching process has obvious effects on the out- of- plane mechanical properties of composites such as impact damage mechanism or impact energy absorption. However, the effects on the in- plane mechanical properties of composites have been under discussion and need to be clarified. In the previous studies, tensile, shear and bending behaviors of 3D stitched biaxial woven carbon composite were investigated. The unidirectional carbon woven fabrics constitute the significant part of raw materials in the composite industry. For this reason, the research study was expanded to examine the in- plane mechanics of 3D stitched unidirectional carbon woven composites. In this study, the unstitched and 3D stitched unidirectional woven carbon composites were manufactured and tested under the shear, tensile and bending loads. While the stitching process improved the tensile and shear modulus of composite, it could not create the significant difference in the bending behavior. The highest module and maximum stress values were obtained in the tensile test. The bending and shear test results follow them, respectively. Moreover, it was proven that the fabric architecture of stitched composite layer has the substantial effect on the tensile properties of 3D stitched composite.

Kaynakça

  • American Composite Manufacturers Association/ Reinforcements, https://discovercomposites.com/what-are-composites/materials/reinforcements/index.html, 10.01.2024
  • ASTM D790. 2017. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials
  • ASTM D7078M-19. 2020. Standard Test Method for Shear Properties of Composite Materials by V-Notched Rail Shear Method.
  • Abdelal N.R. and Donaldson, S.L. 2018. Interlaminar fracture toughness and electromagnetic interference shielding of hybrid-stitched carbon fiber composites. Journal of Reinforced Plastics and Composites, vol. 37, no. 18, pp. 1131–1141.
  • Aymerich, F., Priolo, P. and Sun, C.T. 2003. Static and fatigue behaviour of stitched graphite/epoxy composite laminates. Compos Sci Technol, vol. 63, no. 6, pp. 907–917.
  • Drake, D.A., Sullivan, R.W., Lovejoy, A.E., Clay, S.B. and Jegley, D.C. 2021. Influence of stitching on the out-of-plane behavior of composite materials – A mechanistic review. Journal of Composite Materials, vol. 55, no. 23, pp. 3307–3321.
  • Heidari-Rarani, M., Bashandeh-Khodaei-Naeini, K. and Mirkhalaf, S.M. 2018. Micromechanical modeling of the mechanical behavior of unidirectional composites – A comparative study. Journal of Reinforced Plastics and Composites, vol. 37, no. 16, pp. 1051–1071.
  • Kang, T.J. and Lee, S.H. 1994. Effect of stitching on the mechanical and impact properties of woven laminate composite. J Compos Mater, vol. 28, no. 16, pp. 1574–1587.
  • Kaya, G., Soutis, C. and Potluri, P. 2022. Flexural Behaviour of Unreinforced and Z‑Fibre Reinforced 3D Carbon/Epoxy Composites. Appl Comp Mater, vol. 29, pp. 387-404.
  • Kirmasha, Y.K., Sharba, M.J., Leman, Z. and Sultan, M.T.H. 2020. Mechanical performance of unstitched and silk fiber-stitched woven kenaf fiber-reinforced Epoxy composites. Materials, vol. 13, no. 21, pp. 1–16.
  • Korkmaz, M. 2024. In and off- axes mechanical properties of three- dimensional textile reinforced carbon composites. J Compos Mater, vol. 58, no. 4, pp. 479-487.
  • Korkmaz, M. 2023. Investigation of the bending and quasi-static indentation properties of three-dimensional (3D) textile-reinforced composites. Polym Compos, vol. 45, no. 2, pp. 1703-1714.
  • Larsson, F. 1997. Damage tolerance of a stitched carbon/epoxy laminate. Composite Part A, vol. 28, no. A, pp. 923–934.
  • Lascoup, B., Aboura, Z., Khellil, K. and Benzeggagh, M. 2010. Impact response of three-dimensional stitched sandwich composite. Compos Struct, vol. 92, no. 2, pp. 347–353.
  • Li, H., Yu, Y., Xu, X., Chen, T. and Lu, W. 2021. Enhancing the fracture toughness of laminated composites through carbon
  • nanotube belt stitching. Comp Sci and Tech, vol. 204, pp. 108632.
  • Pingkarawat, K., Wang, C.H., Varley, R.J. and Mouritz, A.P. 2013. Effect of mendable polymer stitch density on the toughening and healing of delamination cracks in carbon-epoxy laminates,” Compos Part A Appl Sci Manuf, vol. 50, pp. 22–30.
  • Reis. L.M.M., Ribeiro, M.L, Madureira, F. et al. 2024. An experimental investigation of the mechanical properties and failure
  • mode of 3D stitched composites. Jour of Mater Res and Tech, vol. 29, pp. 90-100.
  • Saboktakin, A., Kalaoglu, F., Shahrooz, M., Spitas, C. and Farahat, S. 2022. Failure analysis of 3D stitched composite using multi-scale approach for aerospace structures. Journal of the Textile Institute, vol. 113, no. 5, pp. 943–951.
  • Shah Khan M.Z. and Mouritz, A.P. 1996. Fatigue Behavior of Stitched Grp Laminates, vol. 56, no. 6, pp. 695-701.
  • Tarfaoui, M., Nachtane, M. and El Moumen, A. 2019. Energy dissipation of stitched and unstitched woven composite materials during dynamic compression test. Composites Part B: Engineering, vol. 167.
  • Tan, K.T., Watanabe, N., Iwahori, Y. and Ishikawa, T. 2012. Understanding effectiveness of stitching in suppression of impact damage: An empirical delamination reduction trend for stitched composites. Compos Part A Appl Sci Manuf, vol. 43, no. 6, pp. 823–832.
  • Tan, K.T., Yoshimura, A., Watanabe, N., Iwahori, Y. and Ishikawa, T. 2013. Effect of stitch density and stitch thread thickness on damage progression and failure characteristics of stitched composites under out-of-plane loading. Compos Sci Technol, vol. 74, pp. 194–204.
  • Velicki, A. and Jegley, D. 2014. PRSEUS Structural Concept Development, in 52nd Aerospace Science Meeting, AIAA, Jan.
  • WiseTex suite - Department of Materials Engineering, [Online]. Available: https://www.mtm.kuleuven.be/english/research/scalint/cmg/software/wisetex/, 10.01.2024.
  • Xu, H., Zhang, L. and Cheng, L. 2015. The effect of Z-yarn density on the in-plane shear property of three-dimensional stitched carbon fiber reinforced silicon carbide composites. Compos Sci Technol, vol. 106, pp. 120–126.
  • Yalkin, H.E., Icten, B.M. and Alpyildiz, T. 2015. Enhanced mechanical performance of foam core sandwich composites with through the thickness reinforced core. Compos B Eng, vol. 79, pp. 383–391.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tekstil Teknolojisi
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Mehmet Korkmaz 0000-0001-7000-0653

Yayımlanma Tarihi 26 Eylül 2024
Gönderilme Tarihi 18 Mart 2024
Kabul Tarihi 9 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Korkmaz, M. (2024). EXPLORING THE EFFECTS OF STITCHING PROCESS ON THE MECHANICAL PROPERTIES OF THREE- DIMENSIONAL (3D) STITCHED UNIDIRECTIONAL COMPOSITES. Mühendislik Bilimleri Ve Tasarım Dergisi, 12(3), 595-602. https://doi.org/10.21923/jesd.1455055