Araştırma Makalesi
BibTex RIS Kaynak Göster

THE EFFECT OF BANANA AND RICE HUSK POWDERS ON THE PHYSICAL, THERMAL, AND TRIBOLOGICAL PROPERTIES OF POLYPROPYLENE

Yıl 2024, , 466 - 475, 26.09.2024
https://doi.org/10.21923/jesd.1463799

Öz

In recent years, there has been a significant increase in interest in materials with superior properties and economic advantages that can replace traditional ceramics, metals, and polymers. This shift has led researchers in the field of materials science and engineering to focus on composite materials. Particularly, bio-based composites with environmentally friendly and sustainable attributes have become the focal point of studies in this domain. This research study investigated the effects of banana peel (BP) and rice husk (RH) powders, used in particulate form, on the physical, thermal, and tribological properties of polymer composites. Recycled polypropylene (R-PP) was chosen for the production of polymer composites due to its contribution to waste recovery. Experimental results indicated that organic waste materials enhance the thermal resistance of R-PP. With the addition of 30 wt% reinforcement, the heat deflection temperature (HDT) and Vicat softening temperature increased by 5% and 4%, respectively. An increase in the BP/RH ratio led to a higher density and an increase in wear rate. Due to the moisture-absorbing nature of the hydrophilic regions within the organic additives, the moisture absorption rate of the polymer composites increased by 36% at the maximum reinforcement level.

Kaynakça

  • Adeniyi, A. G., Ighalo, J. O., Onifade, D. V., 2019. Banana and Plantain Fiber-Reinforced Polymer Composites. Journal of Polymer Engineering, 39 (7), 597-611. doi:10.1515/polyeng-2019-0085
  • Arjmandi, R., Hassan, A., Majeed, K., Zakaria, Z., 2015. Rice Husk Filled Polymer Composites International Journal of Polymer Science, 2015, 1-32. doi: 10.1155/2015/501471.
  • Arsene, MA., Bilba, K., Savastano Junior, H., Ghavami, K., 2013. Treatments of Non-Wood Plant Fibres Used As Reinforcement in Composite Materials. Materials Research, 16 (4), 903-923. doi: 10.1590/S1516-14392013005000084.
  • Ayrılmış, N., Kaymakçı, A., Özdemir, F., 2013. Physical, Mechanical, and Thermal Properties of Polypropylene Composites Filled With Walnut Shell Flour. Journal of Industrial and Engineering Chemistry, 18 (2), 908-914.
  • Barczewski, M., Sałasińska, K., Szulc, J., 2019. Application of Sunflower Husk, Hazelnut Shell And Walnut Shell As Waste Agricultural Fillers For Epoxy-Based Composites: A Study Into Mechanical Behavior Related To Structural And Rheological Properties. Polymer Testing, 75, 1-11. doi: 10.1016/j.polymertesting.2019.01.017.
  • Boran Torun, S., 2021. Bazı Çevresel Atıkların ve Doğal Liflerin Kompozitlerde Kullanılabilirliği. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 22 (1), 126-133. doi: 10.17474/artvinofd.768285.
  • Büyükkaya, K., 2017. Isırgan Lifi-Fındık Kabuğu Unu Dolgulu Hibrit Kompozitlerin Mekanik Davranışının İncelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 5 (4), 133-144. doi: 10.29109/http-gujsc-gazi-edu-tr.337247.
  • Chand N., Dwivedi, UK., 2006. Effect of Coupling Agent on Abrasive Wear Behaviour of Chopped Jute Fibre-Reinforced Polypropylene Composites. Wear, 261 (10), 1057-1063. doi: 10.1016/j.wear.2006.01.039.
  • Chun, KS., MAimunah, T., Yeng, CM., Yeow, TK., Kiat, OT., 2020. Properties of Corn Husk Fibre Reinforced Epoxy Composites Fabricated Using Vacuum-Assisted Resin Infusion. Journal of Physical Science, 31 (3), 17-31. doi: 10.21315/jps2020.31.3.2.
  • Çavuş V., Mengeloğlu, F., 2017. The Effect of Lignocellulosic Filler Types And Concentrations on The Mechanical Properties of Wood Plastic Composites Produced With Polypropylene Having Various Melt Flowing Index (MFI). Pamukkale Journal Of Engineering Science, 23 (8), 994-999. doi: 10.5505/pajes.2017.80000.
  • Das, H., Saikia, P., Kalita, D., 2015. Physico-Mechanical Properties of Banana Fiber Reinforced Polymer Composite as an Alternative Building Material. Key Engineering Materials, 650, 131-138. doi: 10.4028/www.scientific.net/KEM.650.131.
  • Demir, İ., Elmalı, M., 2020. Organik Atıkların Yapı Malzemesi Olarak Kullanabilirliğinin Araştırılması. Mühendislik Bilimleri ve Tasarım Dergisi, 8 (4), 1303-1311. doi: 10.21923/jesd.781554.
  • Gildis, J., Gaudion, L., Proust, G., Löschle, s., Dong, A., 2017. Rethinking Timber: Investigation into the Use of Waste Macadamia Nut Shells for Additive Manufacturing. Journal of The Minerals, Metals&Materials Socieety, 69, 575-579. https://doi.org/10.1007/s11837-016-2213-6.
  • Gholampour, A., Özbakkaloğlu, T., 2020. A Review of Natural Fiber Composites: Properties, Modification and Processing Techniques, Characterization, Applications. Journal of Material Science, 55 (3), 829-892. doi: 10.1007/s10853-019-03990-y.
  • Dubey, SC., Mishra, V., Sharma, A., 2021. A Review On Polymer Composite With Waste Material As Reinforcement. Materials Today: Proceedings, 47, 2846-2851. doi: 10.1016/j.matpr.2021.03.611.
  • Kandemir, Y., Varol, T., Aslan, M., 2023. Silah Gövdeleri İçin Geliştirilen Polimer Kompozit Malzemeler İçin Çok Kriterli Karar Verme Yöntemleri ile Doğal Takviye Malzemesinin Seçimi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13 (4), 911-926. doi: 10.17714/gumusfenbil.1215620.
  • Kaymakçı, A., Ayrılmış, N., Özdemir, F., Güleç, T., 2013. Utilization of Sunflower Stalk in Manufacture of Thermoplastic Composite. Journal of Polymer Environment, 21 (4), 1135-1142. doi: 10.1007/s10924-012-0564-9.
  • Laaziz, SA., Raji, M., Hilali, E., Essabir, H., Rodrigue, D., Bouhfid, R., Qaiss, A., 2017. Bio-Composites Based on Polylactic Acid And Argan Nut Shell: Production And Properties. International Journal of Biological Macromolecules, 104, 30-42. doi: 10.1016/j.ijbiomac.2017.05.184.
  • Mistik, S. İ., Merdan, N., 2011. Dokuma Bazalt-Cam ve Fındık Kabuğu Takviyeli Polimer Kompozitlerinin Eğilme Dayanımı ve Isı Geçirgenliklerinin İncelenmesi. İstanbul Ticaret Üniversitesi Fen Bilimleri, 10 (20), 119-126.
  • Nik Yusuf NAA., Razab, MKAA., Abu Bakar, MB., Yen, KJ., Tung, CW., Ghani, RSM., Nordin, MN., 2018. Determination of Structural, Physical, and Thermal Properties of Biocomposite Thin Film From Waste Banana Peel. Jurnal Teknologi, 81 (1), 91-100. doi: 10.11113/jt.v81.12599.
  • Paukszta, D., Szostak, M., Rogacz, M., 2014. Mechanical Properties of Polypropylene Copolymers Composites Filled With Rapeseed Straw. Polimery, 59 (2), 165-169. doi: 10.14314/polimery.2014.165.
  • Pradhan, P., Nanda, BP., Satapathy, A., 2020. Polyester Composites Filled With Walnut Shell Powder: Preparation and Thermal Characterization. Polymer Composites, 41 (8), 3294-3308. doi: 10.1002/pc.25620.
  • Ramaraj, B., 2007. Mechanical and Thermal Properties of Polypropylene/Sugarcane Bagasse Composites. Journal of Applied Polymer Science, 103 (6), 3827-3832. doi: 10.1002/app.25333.
  • Rao, L., Makode, Y., Tiwari, A., Dubey, O., Sharma, S., Mishra, V., 2021. Review On Properties Of Banana Fiber Reinforced Polymer Composites. Materials Today: Proceedings, 47, 2825-2829, doi: 10.1016/j.matpr.2021.03.558.
  • Rosa, SML., Nachtigall, SMB., Ferreira, CA., 2009. Thermal and Dynamic-Mechanical Characterization Of Rice-Husk Filled Polypropylene Composites. Macromolecular Research, 17 (1), 8-13. doi: 10.1007/BF03218594.
  • Sahoo, S., Misra, M., Mohanty, A., (2011). Enhanced Properties of Lignin-Based Biodegradable Polymer Composites Using İnjection Moulding Process. Composites Part A: Applied Science and Manufacturing, 42 (11), 1710-1718.
  • Sakthivel, M., Ramesh, S., 2013. Mechanical Properties of Natural Fibre (Banana, Coir, Sisal) Polymer Composites. SCİıence Park, 1 (1).
  • Salasinska, K., Ryszkowska, J., 2015. The Effect of Filler Chemical Constitution And Morphological Properties on The Mechanical Properties Of Natural Fiber Composites. Composite Interfaces, 22 (1), 39-50. doi: 10.1080/15685543.2015.984521.
  • Shalwan, A., Yousif, BF., 2013. In State of Art: Mechanical and Tribological Behaviour of Polymeric Composites Based on Natural Fibres. Materials & Design, 48, 14-24. doi: 10.1016/j.matdes.2012.07.014.
  • Singh, B., 2018. Waste and Supplementary Cementitious Materials in Concrete Characterisation, Properties and Applications Woodhead Publishing Series in Civil and Structural Engineering. 417-460. https://doi.org/10.1016/B978-0-08-102156-9.00013-4
  • Suhot, MA., Hassan, MZ., Aziz, SA., Md Daud, MY., 2021. Recent Progress of Rice Husk Reinforced Polymer Composites: A Review. Polymers, 13 (15), 2391. doi: 10.3390/polym13152391.
  • Şahin, AE., Fidan, S., Çetin, B., Sınmazçelik, T., 2024. Comparison of The Usage of Nut Shell, Walnut Shell, And Pistachio Shell As A Reinforcement Particle on The Mechanical And Wear Performance of Polypropylene. Journal of Applied Polymer Science, 141(16). https://doi.org/10.1002/app.55248
  • Taşdemir, M., Şen, E. G., 2022. Polipropilen/Üzüm Sapı/Çeltik Polimer Kompozitinin Mekanik Özelliklerinin Atık Cam Elyaf ile Geliştirilmesi. International Journal of Advances in Engineering and Pure Sciences, 34 (1), 131-140. doi:10.7240/jeps.1041672
  • Väisänen, T., Haapala, A., Lappalainen, R., Tomppo, L., 2016. Utilization of Agricultural And Forest ındustry Waste And Residues İn Natural Fiber-Polymer Composites: A Review. Waste Management, 54, 62-73. doi: 10.1016/j.wasman.2016.04.037.
  • Vigneshwaran, S., Sundarakannan, R., John, KM., Johnson, R., Prasath, KA., Ajith, S., Arumugaprabu, V., Uthayakumar, M., 2020. Recent Advancement in The Natural Fiber Polymer Composites: A Comprehensive Review. Journal of Cleaner Production, 277. doi: 10.1016/j.jclepro.2020.124109.
  • Wijianto, W., Rijal, M.B., Adityarini, H., 2019. Effect of NaOH Concentration Treatment on Tensile Strength, Flexure Strength and Elasticity Modulus of Banana Fiber Reinforced Polyester Resin. Materials Science Forum, 961, 10-15.

MUZ VE PİRİNÇ KABUĞU TOZLARININ POLİPROPİLENİN FİZİKSEL, TERMAL VE TRİBOLOJİK ÖZELLİKLERİNE ETKİSİ

Yıl 2024, , 466 - 475, 26.09.2024
https://doi.org/10.21923/jesd.1463799

Öz

Son yıllarda, geleneksel seramik, metal ve polimerlerin yerini alabilecek üstün özelliklere sahip ve ekonomik açıdan avantajlı malzemelere yönelik ilgi önemli ölçüde artmıştır. Bu durum, malzeme bilimi ve mühendisliği alanındaki araştırmacıların dikkatlerini kompozit malzemelere yönlendirmesine neden olmuştur. Özellikle çevre dostu ve sürdürülebilir özelliklere sahip biyo-bazlı kompozitler, bu alandaki çalışmaların odak noktası haline gelmiştir. Bu araştırma çalışmasında, toz formda kullanılan muz kabuğu (MK) ve pirinç kabuğu (PK) oranlarının polimer kompozitler üzerindeki fiziksel, termal ve tribolojik etkileri incelenmiştir. Polimer kompozit üretiminde, atık kazanımına katkıda bulunması amacıyla geri dönüştürülmüş polipropilen (R-PP) tercih edilmiştir. Çalışma kapsamında yapılan deney sonuçları, organik atıkların R-PP’nin termal direncini artırdığını ortaya koymuştur. Ağırlıkça %30 konsantrasyonunda takviye ilavesiyle, ısıl çarpılma sıcaklığı (HDT) ve vicat yumuşama sıcaklığı sırasıyla %5 ve %4 oranında artış göstermiştir. MK/PK oranının artması yoğunluğu artırırken, aşınma oranının da artmasına neden olmuştur. Organik katkı maddelerinin yapısındaki hidrofilik bölgelerin nem çekme özelliği nedeniyle, maksimum takviye oranıyla polimer kompozitlerin nem emme oranı %36 artmıştır.

Kaynakça

  • Adeniyi, A. G., Ighalo, J. O., Onifade, D. V., 2019. Banana and Plantain Fiber-Reinforced Polymer Composites. Journal of Polymer Engineering, 39 (7), 597-611. doi:10.1515/polyeng-2019-0085
  • Arjmandi, R., Hassan, A., Majeed, K., Zakaria, Z., 2015. Rice Husk Filled Polymer Composites International Journal of Polymer Science, 2015, 1-32. doi: 10.1155/2015/501471.
  • Arsene, MA., Bilba, K., Savastano Junior, H., Ghavami, K., 2013. Treatments of Non-Wood Plant Fibres Used As Reinforcement in Composite Materials. Materials Research, 16 (4), 903-923. doi: 10.1590/S1516-14392013005000084.
  • Ayrılmış, N., Kaymakçı, A., Özdemir, F., 2013. Physical, Mechanical, and Thermal Properties of Polypropylene Composites Filled With Walnut Shell Flour. Journal of Industrial and Engineering Chemistry, 18 (2), 908-914.
  • Barczewski, M., Sałasińska, K., Szulc, J., 2019. Application of Sunflower Husk, Hazelnut Shell And Walnut Shell As Waste Agricultural Fillers For Epoxy-Based Composites: A Study Into Mechanical Behavior Related To Structural And Rheological Properties. Polymer Testing, 75, 1-11. doi: 10.1016/j.polymertesting.2019.01.017.
  • Boran Torun, S., 2021. Bazı Çevresel Atıkların ve Doğal Liflerin Kompozitlerde Kullanılabilirliği. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 22 (1), 126-133. doi: 10.17474/artvinofd.768285.
  • Büyükkaya, K., 2017. Isırgan Lifi-Fındık Kabuğu Unu Dolgulu Hibrit Kompozitlerin Mekanik Davranışının İncelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 5 (4), 133-144. doi: 10.29109/http-gujsc-gazi-edu-tr.337247.
  • Chand N., Dwivedi, UK., 2006. Effect of Coupling Agent on Abrasive Wear Behaviour of Chopped Jute Fibre-Reinforced Polypropylene Composites. Wear, 261 (10), 1057-1063. doi: 10.1016/j.wear.2006.01.039.
  • Chun, KS., MAimunah, T., Yeng, CM., Yeow, TK., Kiat, OT., 2020. Properties of Corn Husk Fibre Reinforced Epoxy Composites Fabricated Using Vacuum-Assisted Resin Infusion. Journal of Physical Science, 31 (3), 17-31. doi: 10.21315/jps2020.31.3.2.
  • Çavuş V., Mengeloğlu, F., 2017. The Effect of Lignocellulosic Filler Types And Concentrations on The Mechanical Properties of Wood Plastic Composites Produced With Polypropylene Having Various Melt Flowing Index (MFI). Pamukkale Journal Of Engineering Science, 23 (8), 994-999. doi: 10.5505/pajes.2017.80000.
  • Das, H., Saikia, P., Kalita, D., 2015. Physico-Mechanical Properties of Banana Fiber Reinforced Polymer Composite as an Alternative Building Material. Key Engineering Materials, 650, 131-138. doi: 10.4028/www.scientific.net/KEM.650.131.
  • Demir, İ., Elmalı, M., 2020. Organik Atıkların Yapı Malzemesi Olarak Kullanabilirliğinin Araştırılması. Mühendislik Bilimleri ve Tasarım Dergisi, 8 (4), 1303-1311. doi: 10.21923/jesd.781554.
  • Gildis, J., Gaudion, L., Proust, G., Löschle, s., Dong, A., 2017. Rethinking Timber: Investigation into the Use of Waste Macadamia Nut Shells for Additive Manufacturing. Journal of The Minerals, Metals&Materials Socieety, 69, 575-579. https://doi.org/10.1007/s11837-016-2213-6.
  • Gholampour, A., Özbakkaloğlu, T., 2020. A Review of Natural Fiber Composites: Properties, Modification and Processing Techniques, Characterization, Applications. Journal of Material Science, 55 (3), 829-892. doi: 10.1007/s10853-019-03990-y.
  • Dubey, SC., Mishra, V., Sharma, A., 2021. A Review On Polymer Composite With Waste Material As Reinforcement. Materials Today: Proceedings, 47, 2846-2851. doi: 10.1016/j.matpr.2021.03.611.
  • Kandemir, Y., Varol, T., Aslan, M., 2023. Silah Gövdeleri İçin Geliştirilen Polimer Kompozit Malzemeler İçin Çok Kriterli Karar Verme Yöntemleri ile Doğal Takviye Malzemesinin Seçimi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13 (4), 911-926. doi: 10.17714/gumusfenbil.1215620.
  • Kaymakçı, A., Ayrılmış, N., Özdemir, F., Güleç, T., 2013. Utilization of Sunflower Stalk in Manufacture of Thermoplastic Composite. Journal of Polymer Environment, 21 (4), 1135-1142. doi: 10.1007/s10924-012-0564-9.
  • Laaziz, SA., Raji, M., Hilali, E., Essabir, H., Rodrigue, D., Bouhfid, R., Qaiss, A., 2017. Bio-Composites Based on Polylactic Acid And Argan Nut Shell: Production And Properties. International Journal of Biological Macromolecules, 104, 30-42. doi: 10.1016/j.ijbiomac.2017.05.184.
  • Mistik, S. İ., Merdan, N., 2011. Dokuma Bazalt-Cam ve Fındık Kabuğu Takviyeli Polimer Kompozitlerinin Eğilme Dayanımı ve Isı Geçirgenliklerinin İncelenmesi. İstanbul Ticaret Üniversitesi Fen Bilimleri, 10 (20), 119-126.
  • Nik Yusuf NAA., Razab, MKAA., Abu Bakar, MB., Yen, KJ., Tung, CW., Ghani, RSM., Nordin, MN., 2018. Determination of Structural, Physical, and Thermal Properties of Biocomposite Thin Film From Waste Banana Peel. Jurnal Teknologi, 81 (1), 91-100. doi: 10.11113/jt.v81.12599.
  • Paukszta, D., Szostak, M., Rogacz, M., 2014. Mechanical Properties of Polypropylene Copolymers Composites Filled With Rapeseed Straw. Polimery, 59 (2), 165-169. doi: 10.14314/polimery.2014.165.
  • Pradhan, P., Nanda, BP., Satapathy, A., 2020. Polyester Composites Filled With Walnut Shell Powder: Preparation and Thermal Characterization. Polymer Composites, 41 (8), 3294-3308. doi: 10.1002/pc.25620.
  • Ramaraj, B., 2007. Mechanical and Thermal Properties of Polypropylene/Sugarcane Bagasse Composites. Journal of Applied Polymer Science, 103 (6), 3827-3832. doi: 10.1002/app.25333.
  • Rao, L., Makode, Y., Tiwari, A., Dubey, O., Sharma, S., Mishra, V., 2021. Review On Properties Of Banana Fiber Reinforced Polymer Composites. Materials Today: Proceedings, 47, 2825-2829, doi: 10.1016/j.matpr.2021.03.558.
  • Rosa, SML., Nachtigall, SMB., Ferreira, CA., 2009. Thermal and Dynamic-Mechanical Characterization Of Rice-Husk Filled Polypropylene Composites. Macromolecular Research, 17 (1), 8-13. doi: 10.1007/BF03218594.
  • Sahoo, S., Misra, M., Mohanty, A., (2011). Enhanced Properties of Lignin-Based Biodegradable Polymer Composites Using İnjection Moulding Process. Composites Part A: Applied Science and Manufacturing, 42 (11), 1710-1718.
  • Sakthivel, M., Ramesh, S., 2013. Mechanical Properties of Natural Fibre (Banana, Coir, Sisal) Polymer Composites. SCİıence Park, 1 (1).
  • Salasinska, K., Ryszkowska, J., 2015. The Effect of Filler Chemical Constitution And Morphological Properties on The Mechanical Properties Of Natural Fiber Composites. Composite Interfaces, 22 (1), 39-50. doi: 10.1080/15685543.2015.984521.
  • Shalwan, A., Yousif, BF., 2013. In State of Art: Mechanical and Tribological Behaviour of Polymeric Composites Based on Natural Fibres. Materials & Design, 48, 14-24. doi: 10.1016/j.matdes.2012.07.014.
  • Singh, B., 2018. Waste and Supplementary Cementitious Materials in Concrete Characterisation, Properties and Applications Woodhead Publishing Series in Civil and Structural Engineering. 417-460. https://doi.org/10.1016/B978-0-08-102156-9.00013-4
  • Suhot, MA., Hassan, MZ., Aziz, SA., Md Daud, MY., 2021. Recent Progress of Rice Husk Reinforced Polymer Composites: A Review. Polymers, 13 (15), 2391. doi: 10.3390/polym13152391.
  • Şahin, AE., Fidan, S., Çetin, B., Sınmazçelik, T., 2024. Comparison of The Usage of Nut Shell, Walnut Shell, And Pistachio Shell As A Reinforcement Particle on The Mechanical And Wear Performance of Polypropylene. Journal of Applied Polymer Science, 141(16). https://doi.org/10.1002/app.55248
  • Taşdemir, M., Şen, E. G., 2022. Polipropilen/Üzüm Sapı/Çeltik Polimer Kompozitinin Mekanik Özelliklerinin Atık Cam Elyaf ile Geliştirilmesi. International Journal of Advances in Engineering and Pure Sciences, 34 (1), 131-140. doi:10.7240/jeps.1041672
  • Väisänen, T., Haapala, A., Lappalainen, R., Tomppo, L., 2016. Utilization of Agricultural And Forest ındustry Waste And Residues İn Natural Fiber-Polymer Composites: A Review. Waste Management, 54, 62-73. doi: 10.1016/j.wasman.2016.04.037.
  • Vigneshwaran, S., Sundarakannan, R., John, KM., Johnson, R., Prasath, KA., Ajith, S., Arumugaprabu, V., Uthayakumar, M., 2020. Recent Advancement in The Natural Fiber Polymer Composites: A Comprehensive Review. Journal of Cleaner Production, 277. doi: 10.1016/j.jclepro.2020.124109.
  • Wijianto, W., Rijal, M.B., Adityarini, H., 2019. Effect of NaOH Concentration Treatment on Tensile Strength, Flexure Strength and Elasticity Modulus of Banana Fiber Reinforced Polyester Resin. Materials Science Forum, 961, 10-15.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Polimer Bilimi ve Teknolojileri, Malzeme Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Elif Ulutaş 0000-0001-7753-8878

Münir Taşdemir 0000-0001-8635-7251

Yayımlanma Tarihi 26 Eylül 2024
Gönderilme Tarihi 2 Nisan 2024
Kabul Tarihi 12 Temmuz 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Ulutaş, E., & Taşdemir, M. (2024). MUZ VE PİRİNÇ KABUĞU TOZLARININ POLİPROPİLENİN FİZİKSEL, TERMAL VE TRİBOLOJİK ÖZELLİKLERİNE ETKİSİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 12(3), 466-475. https://doi.org/10.21923/jesd.1463799