THE EFFECT OF SERIES RANGE SELECTION ON THE RESULT IN THE DESIGN PROBLEM OF A COMBLINE BAND PASS FILTER WITH DUAL BAND MICROSTRIP CONNECTION USING THE GOOSE ALGORITHM
Dual-band microwave bandpass filters have attracted great attention in recent developments to meet the demand in multiband radio wave and wireless applications. Optimization methods are frequently used to meet this need. Another big problem encountered here is the selection of the value width range of the input data sets to be selected in optimization. In this article, the contribution of the success of the selection of the input data set range on the optimization problem through a compact microstrip bandpass filter (BPF) optimization problem with spectrum bandpass for 2.8 GHz and 3.3 GHz for 5G wireless communication systems is presented. In the study, the high number of input parameters as well as the fact that the selected filter model is dual-band makes the optimization problem very difficult. For this reason, an up-to-date and very successful algorithm was preferred. The design results of the filter's S (dB) parameters were simulated using the MATLAB program. In addition, when the results of the selected intervals are considered as a table, it can be seen that quite variable success has been achieved. This shows that in optimization problems, width range selection in the input data set is of great importance.
Al-Yasir, Y., Abd-Alhameed, R. A., Noras, J. M., Abdulkhaleq, A. M., & Parchin, N. O. (2018). Design of Very Compact Combline Band-Pass Filter for 5G Applications. Loughborough Antennas & Propagation Conference 2018 (LAPC 2018), 61 (4 pp.)-61 (4 pp.). https://doi.org/10.1049/cp.2018.1482
Andreica, S., Munteanu, C., Gliga, M., Giurgiuman, A., Pacurar, C., & Contantinescu, C. (2023). Development and Optimization of a Broadside-Coupled Dual-Band Microstrip Bandpass Filter for Wireless Communication Systems. 2023 10th International Conference on Modern Power Systems (MPS), 1-4. https://doi.org/10.1109/MPS58874.2023.10187504
Belen, A., & Belen, M. A. (2023). Data‐driven modeling of band‐pass filter for sub‐5G applications. Microwave and Optical Technology Letters, 65(8), 2210-2216. https://doi.org/10.1002/mop.33704
Belen, M. A., & Mahouti, P. (2019). 2.4ghz Akıllı Haberleşme Sistemleri İçin Sarmal Şekilli Frekans Seçici Yüzey Tasarımı. Mühendislik Bilimleri ve Tasarım Dergisi, 7(2), 381-385. https://doi.org/10.21923/jesd.468281
Damou, M., Chetioui, M., Gouni, S., Boudkhil, A., Bouhmidi, R., & Bouras, B. (2022). Optimization of Multi-Ports Combline Filter Using Admittance Extraction Technique. 2022 International Conference of Advanced Technology in Electronic and Electrical Engineering (ICATEEE), 1-5. https://doi.org/10.1109/ICATEEE57445.2022.10093720
Das, A., & Das, S. K. (2010). Microwave Engineering. Tata McGraw Hill Education Private Limited.
Farahani, H. S., Rezaee, B., & Bosch, W. (2021). Compact Filtering Power Divider with Distributed Combline Coupled-Resonators. 2021 IEEE MTT-S International Microwave Filter Workshop (IMFW), 85-87. https://doi.org/10.1109/IMFW49589.2021.9642331
Gomez-Garcia, R., & Yang, L. (2021). Spurious-Free Signal-Interference Dual-Band Bandpass Filters. 2021 IEEE MTT-S International Wireless Symposium (IWS), 1-3. https://doi.org/10.1109/IWS52775.2021.9499377
Göçen, C., Akdag, I., Belen, M. A., Mahouti, P., Kaya, A., & Palandöken, M. (2022). ISM 2.4 GHz Band Antenna Model for RF Energy Harvesting Systems. European Journal of Science and Technology. https://doi.org/10.31590/ejosat.1202107
Hamad, R. K., & Rashid, T. A. (2024). GOOSE algorithm: a powerful optimization tool for real-world engineering challenges and beyond. Evolving Systems. https://doi.org/10.1007/s12530-023-09553-6
Hong, J., & Lancaster, M. J. (2001). Microstrip Filters for RF/Microwave Applications. Wiley. https://doi.org/10.1002/0471221619
Jamshidi-Zarmehri, H., San-Blas, Á. A., Neshati, M. H., Cogollos, S., Sharma, A., Boria, V. E., & Coves, Á. (2023). Efficient Design Procedure for Combline Bandpass Filters With Advanced Electrical Responses. IEEE Access, 11, 52168-52184. https://doi.org/10.1109/ACCESS.2023.3278791
Kumar, B. P., & Baskar, R. (2022). Design of Dual Band Bandpass Filter for Reduced Insertion Loss and Comparison with Ultra Wide Band Filter. 2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS), 38-41. https://doi.org/10.1109/ICTACS56270.2022.9988240
Kumar, N., & Kumar, M. (2015). Dual-band bandpass filter for WLAN application using coupled three-line microstrip structure. 2015 2nd International Conference on Electronics and Communication Systems (ICECS), 868-870. https://doi.org/10.1109/ECS.2015.7125038
Kumar, P. (2015). Design of dual-band band pass filter using transmission line sections. 2015 Annual IEEE India Conference (INDICON), 1-4. https://doi.org/10.1109/INDICON.2015.7443421
Lin, S.-C., Wang, C.-H., Chen, Y.-W., & Chen, C. H. (2007). Improved Combline Bandpass Filter with Multiple Transmission Zeros. 2007 Asia-Pacific Microwave Conference, 1-4. https://doi.org/10.1109/APMC.2007.4554864
Maharjan, R. K., & Kim, N.-Y. (2014). Microstrip Bandpass Filters Using Window Hairpin Resonator and T-Feeder Coupling Lines. Arabian Journal for Science and Engineering, 39(5), 3989-3997. https://doi.org/10.1007/s13369-014-0997-7
Malki, M., Yang, L., & Gomez-Garcia, R. (2022). Input-Reflectionless Two-Branch Channelized Passive Dual-Band Bandpass Filters. 2022 52nd European Microwave Conference (EuMC), 325-328. https://doi.org/10.23919/EuMC54642.2022.9924315
Miyake, H., Kitazawa, S., Ishizaki, T., Yamada, T., & Nagatomi, Y. (t.y.). A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones. 1997 IEEE MTT-S International
Microwave Symposium Digest, 789-792. https://doi.org/10.1109/MWSYM.1997.602908
Pozar, D. M. (2011). Microwave Engineering (4th.). John Wiley & Sons,.
Psychogiou, D., Gomez-Garcia, R., & Peroulis, D. (2018). RF Wide-Band Bandpass Filter With Dynamic In-Band Multi-Interference Suppression Capability. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(7), 898-902. https://doi.org/10.1109/TCSII.2017.2726145
Quendo, C., Rius, E., & Person, C. (t.y.). An original topology of dual-band filter with transmission zeros. IEEE MTT-S International Microwave Symposium Digest, 2003, 1093-1096. https://doi.org/10.1109/MWSYM.2003.1212559
Ragavi., B., Sharmila, S., Dharani, J., & Deepthika, K. (2023). Design of Dielectric coupled Line Resonator with Defector Ground Structure for Microwave frequency with Double Band Pass filter. 2023 International Conference on Computer Communication and Informatics (ICCCI), 1-6. https://doi.org/10.1109/ICCCI56745.2023.10128197
Rajendran, J. (2012). Design and Optimization of Band Pass Filter for SoftwareDefined Radio Telescope. International Journal of Information and Electronics Engineering. https://doi.org/10.7763/IJIEE.2012.V2.180
Rezaei, B., Pooyan, M., & Ershadi, T. Z. (2012). Using Microstrip Elements in Dual-band Bandpass Filter with Parallel Coupled-Lines and Space Mapping Technique. https://api.semanticscholar.org/CorpusID:55592881
Saad, M. R., Ambak, Z., Alias, R., Ibrahim, A., Shapee, S. M., Yusoff, M. Z. M., Yahya, M. R., & Mat, A. F. A. (2008). Designing 5GHz microstrip coupled line bandpass filter using LTCC technology. 2008 International Conference on Electronic Design, 1-4. https://doi.org/10.1109/ICED.2008.4786774
Shaman, H. N. (2012). New S-Band Bandpass Filter (BPF) With Wideband Passband for Wireless Communication Systems. IEEE Microwave and Wireless Components Letters, 22(5), 242-244. https://doi.org/10.1109/LMWC.2012.2190269
Sirci, S., Menargues, E., & Berry, S. (2021). Triangular Combline Filters Conceived for Additive Manufacturing. 2021 IEEE MTT-S International Microwave Filter Workshop (IMFW), 151-154. https://doi.org/10.1109/IMFW49589.2021.9642360
Tsai, L.-C., & Hsue, C.-W. (2004). Dual-Band Bandpass Filters Using Equal-Length Coupled-Serial-Shunted Lines and<tex>$ Z$</tex>-Transform Technique. IEEE Transactions on Microwave Theory and Techniques, 52(4), 1111-1117. https://doi.org/10.1109/TMTT.2004.825680
Uluslu, A. (2021). Design of Microstrip Filter by Modeling with Reduced Data. The Applied Computational Electromagnetics Society Journal (ACES). https://doi.org/10.13052/2021.ACES.J.361109
Uluslu, A. (2022). Chameleon Swarm Algorithm Assisted Optimization of U-Slot Patch Antenna for Quad-Band Applications. IEEE Access, 10, 74152-74163. https://doi.org/10.1109/ACCESS.2022.3190378
Uluslu, A. (2022). Çok Amaçlı Evrimsel Algoritmalar İle Filtre Tasarımı. Mühendislik Bilimleri ve Tasarım Dergisi, 10(1), 201-216. https://doi.org/10.21923/jesd.935175
Uluslu, A. (2023). Fitting nonlinear mathematical models to the cost function of the quadrafilar helix antenna optimization problem. Analog Integrated Circuits and Signal Processing, 115(3), 307-318. https://doi.org/10.1007/s10470-023-02174-8
Wan, Y., Zhou, J., Rao, Y., Xie, J., Li, Q., & Luo, X. (2023). Independently Tunable Compact Dual-Band Bandpass Filter With High Selectivity and Wide Stopband Using Multilayer Folded Dual-Mode SIDGS Resonator. 2023 IEEE/MTT-S International Microwave Symposium - IMS 2023, 827-830. https://doi.org/10.1109/IMS37964.2023.10187986
Yang, L., Malki, M., & Gómez-García, R. (2024). Multilayer Dual-Band Bandpass Filter Using Microstrip-to-Slotline Transitions and Transversal Signal-Interference Microstrip Lines. 2024 IEEE Radio and Wireless Symposium (RWS), 79-82. https://doi.org/10.1109/RWS56914.2024.10438619
Yi-Ming Chen, Sheng-Fuh Chang, Chia-Chan Chang, & Tin-Jae Hung. (2007). Design of Stepped-Impedance Combline Bandpass Filters With Symmetric Insertion-Loss Response and Wide Stopband Range. IEEE Transactions on Microwave Theory and Techniques, 55(10), 2191-2199. https://doi.org/10.1109/TMTT.2007.906482
Zhao, X.-B., Wei, F., Yang, L., & Gómez-García, R. (2024). Planar-Magic-T-Based Dual-Band Bandpass Filters. 2024 IEEE Radio and Wireless Symposium (RWS), 75-78. https://doi.org/10.1109/RWS56914.2024.10438662
Çift bantlı mikrodalga bant geçiren filtreler, çok bantlı radyo dalgası ve kablosuz uygulamalardaki talebi karşılamak için son gelişmelerde büyük ilgi görmüştür. Bu ihtiyacı karşılamak için optimizasyon yöntemlerine sıkça başvurulmaktadır. Burada karşılaşılan bir diğer büyük problem ise optimizasyonda seçilecek giriş veri setlerinin değer genişlik aralığının seçimidir. Bu makalede, 5G kablosuz iletişim sistemleri için 2,8 GHz ve 3,3 GHz için spektrum bant geçiren kompakt bir mikroşerit bant geçiren filtre (BGF) optimizasyon problemi üzerinden giriş veri seti aralığının seçiminin optimizasyon problemi üzerindeki başarısının katkısı sunulmaktadır. Yapılan çalışmada giriş parametre sayısının yüksekliğinin yanı sıra seçilen filtre modelinin çift bantlı olması optimizasyon problemini oldukça zorlaştırmaktadır. Bu nedenle algoritma olarak güncel ve oldukça başarılı bir algoritma tercih edilmiştir. Tasarım sonuçları MATLAB programı kullanılarak filtrenin S (dB) parametreleri simülasyon olarak sergilenmiştir. Ayrıca seçilen aralıkların sonuçları tablo olarak ele alındığında oldukça değişken başarılar elde edildiği görülmektedir. Buda optimizasyon problemlerinde, giriş veri setinde genişlik aralık seçimi büyük önem arz ettiğini göstermektedir.
Al-Yasir, Y., Abd-Alhameed, R. A., Noras, J. M., Abdulkhaleq, A. M., & Parchin, N. O. (2018). Design of Very Compact Combline Band-Pass Filter for 5G Applications. Loughborough Antennas & Propagation Conference 2018 (LAPC 2018), 61 (4 pp.)-61 (4 pp.). https://doi.org/10.1049/cp.2018.1482
Andreica, S., Munteanu, C., Gliga, M., Giurgiuman, A., Pacurar, C., & Contantinescu, C. (2023). Development and Optimization of a Broadside-Coupled Dual-Band Microstrip Bandpass Filter for Wireless Communication Systems. 2023 10th International Conference on Modern Power Systems (MPS), 1-4. https://doi.org/10.1109/MPS58874.2023.10187504
Belen, A., & Belen, M. A. (2023). Data‐driven modeling of band‐pass filter for sub‐5G applications. Microwave and Optical Technology Letters, 65(8), 2210-2216. https://doi.org/10.1002/mop.33704
Belen, M. A., & Mahouti, P. (2019). 2.4ghz Akıllı Haberleşme Sistemleri İçin Sarmal Şekilli Frekans Seçici Yüzey Tasarımı. Mühendislik Bilimleri ve Tasarım Dergisi, 7(2), 381-385. https://doi.org/10.21923/jesd.468281
Damou, M., Chetioui, M., Gouni, S., Boudkhil, A., Bouhmidi, R., & Bouras, B. (2022). Optimization of Multi-Ports Combline Filter Using Admittance Extraction Technique. 2022 International Conference of Advanced Technology in Electronic and Electrical Engineering (ICATEEE), 1-5. https://doi.org/10.1109/ICATEEE57445.2022.10093720
Das, A., & Das, S. K. (2010). Microwave Engineering. Tata McGraw Hill Education Private Limited.
Farahani, H. S., Rezaee, B., & Bosch, W. (2021). Compact Filtering Power Divider with Distributed Combline Coupled-Resonators. 2021 IEEE MTT-S International Microwave Filter Workshop (IMFW), 85-87. https://doi.org/10.1109/IMFW49589.2021.9642331
Gomez-Garcia, R., & Yang, L. (2021). Spurious-Free Signal-Interference Dual-Band Bandpass Filters. 2021 IEEE MTT-S International Wireless Symposium (IWS), 1-3. https://doi.org/10.1109/IWS52775.2021.9499377
Göçen, C., Akdag, I., Belen, M. A., Mahouti, P., Kaya, A., & Palandöken, M. (2022). ISM 2.4 GHz Band Antenna Model for RF Energy Harvesting Systems. European Journal of Science and Technology. https://doi.org/10.31590/ejosat.1202107
Hamad, R. K., & Rashid, T. A. (2024). GOOSE algorithm: a powerful optimization tool for real-world engineering challenges and beyond. Evolving Systems. https://doi.org/10.1007/s12530-023-09553-6
Hong, J., & Lancaster, M. J. (2001). Microstrip Filters for RF/Microwave Applications. Wiley. https://doi.org/10.1002/0471221619
Jamshidi-Zarmehri, H., San-Blas, Á. A., Neshati, M. H., Cogollos, S., Sharma, A., Boria, V. E., & Coves, Á. (2023). Efficient Design Procedure for Combline Bandpass Filters With Advanced Electrical Responses. IEEE Access, 11, 52168-52184. https://doi.org/10.1109/ACCESS.2023.3278791
Kumar, B. P., & Baskar, R. (2022). Design of Dual Band Bandpass Filter for Reduced Insertion Loss and Comparison with Ultra Wide Band Filter. 2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS), 38-41. https://doi.org/10.1109/ICTACS56270.2022.9988240
Kumar, N., & Kumar, M. (2015). Dual-band bandpass filter for WLAN application using coupled three-line microstrip structure. 2015 2nd International Conference on Electronics and Communication Systems (ICECS), 868-870. https://doi.org/10.1109/ECS.2015.7125038
Kumar, P. (2015). Design of dual-band band pass filter using transmission line sections. 2015 Annual IEEE India Conference (INDICON), 1-4. https://doi.org/10.1109/INDICON.2015.7443421
Lin, S.-C., Wang, C.-H., Chen, Y.-W., & Chen, C. H. (2007). Improved Combline Bandpass Filter with Multiple Transmission Zeros. 2007 Asia-Pacific Microwave Conference, 1-4. https://doi.org/10.1109/APMC.2007.4554864
Maharjan, R. K., & Kim, N.-Y. (2014). Microstrip Bandpass Filters Using Window Hairpin Resonator and T-Feeder Coupling Lines. Arabian Journal for Science and Engineering, 39(5), 3989-3997. https://doi.org/10.1007/s13369-014-0997-7
Malki, M., Yang, L., & Gomez-Garcia, R. (2022). Input-Reflectionless Two-Branch Channelized Passive Dual-Band Bandpass Filters. 2022 52nd European Microwave Conference (EuMC), 325-328. https://doi.org/10.23919/EuMC54642.2022.9924315
Miyake, H., Kitazawa, S., Ishizaki, T., Yamada, T., & Nagatomi, Y. (t.y.). A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones. 1997 IEEE MTT-S International
Microwave Symposium Digest, 789-792. https://doi.org/10.1109/MWSYM.1997.602908
Pozar, D. M. (2011). Microwave Engineering (4th.). John Wiley & Sons,.
Psychogiou, D., Gomez-Garcia, R., & Peroulis, D. (2018). RF Wide-Band Bandpass Filter With Dynamic In-Band Multi-Interference Suppression Capability. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(7), 898-902. https://doi.org/10.1109/TCSII.2017.2726145
Quendo, C., Rius, E., & Person, C. (t.y.). An original topology of dual-band filter with transmission zeros. IEEE MTT-S International Microwave Symposium Digest, 2003, 1093-1096. https://doi.org/10.1109/MWSYM.2003.1212559
Ragavi., B., Sharmila, S., Dharani, J., & Deepthika, K. (2023). Design of Dielectric coupled Line Resonator with Defector Ground Structure for Microwave frequency with Double Band Pass filter. 2023 International Conference on Computer Communication and Informatics (ICCCI), 1-6. https://doi.org/10.1109/ICCCI56745.2023.10128197
Rajendran, J. (2012). Design and Optimization of Band Pass Filter for SoftwareDefined Radio Telescope. International Journal of Information and Electronics Engineering. https://doi.org/10.7763/IJIEE.2012.V2.180
Rezaei, B., Pooyan, M., & Ershadi, T. Z. (2012). Using Microstrip Elements in Dual-band Bandpass Filter with Parallel Coupled-Lines and Space Mapping Technique. https://api.semanticscholar.org/CorpusID:55592881
Saad, M. R., Ambak, Z., Alias, R., Ibrahim, A., Shapee, S. M., Yusoff, M. Z. M., Yahya, M. R., & Mat, A. F. A. (2008). Designing 5GHz microstrip coupled line bandpass filter using LTCC technology. 2008 International Conference on Electronic Design, 1-4. https://doi.org/10.1109/ICED.2008.4786774
Shaman, H. N. (2012). New S-Band Bandpass Filter (BPF) With Wideband Passband for Wireless Communication Systems. IEEE Microwave and Wireless Components Letters, 22(5), 242-244. https://doi.org/10.1109/LMWC.2012.2190269
Sirci, S., Menargues, E., & Berry, S. (2021). Triangular Combline Filters Conceived for Additive Manufacturing. 2021 IEEE MTT-S International Microwave Filter Workshop (IMFW), 151-154. https://doi.org/10.1109/IMFW49589.2021.9642360
Tsai, L.-C., & Hsue, C.-W. (2004). Dual-Band Bandpass Filters Using Equal-Length Coupled-Serial-Shunted Lines and<tex>$ Z$</tex>-Transform Technique. IEEE Transactions on Microwave Theory and Techniques, 52(4), 1111-1117. https://doi.org/10.1109/TMTT.2004.825680
Uluslu, A. (2021). Design of Microstrip Filter by Modeling with Reduced Data. The Applied Computational Electromagnetics Society Journal (ACES). https://doi.org/10.13052/2021.ACES.J.361109
Uluslu, A. (2022). Chameleon Swarm Algorithm Assisted Optimization of U-Slot Patch Antenna for Quad-Band Applications. IEEE Access, 10, 74152-74163. https://doi.org/10.1109/ACCESS.2022.3190378
Uluslu, A. (2022). Çok Amaçlı Evrimsel Algoritmalar İle Filtre Tasarımı. Mühendislik Bilimleri ve Tasarım Dergisi, 10(1), 201-216. https://doi.org/10.21923/jesd.935175
Uluslu, A. (2023). Fitting nonlinear mathematical models to the cost function of the quadrafilar helix antenna optimization problem. Analog Integrated Circuits and Signal Processing, 115(3), 307-318. https://doi.org/10.1007/s10470-023-02174-8
Wan, Y., Zhou, J., Rao, Y., Xie, J., Li, Q., & Luo, X. (2023). Independently Tunable Compact Dual-Band Bandpass Filter With High Selectivity and Wide Stopband Using Multilayer Folded Dual-Mode SIDGS Resonator. 2023 IEEE/MTT-S International Microwave Symposium - IMS 2023, 827-830. https://doi.org/10.1109/IMS37964.2023.10187986
Yang, L., Malki, M., & Gómez-García, R. (2024). Multilayer Dual-Band Bandpass Filter Using Microstrip-to-Slotline Transitions and Transversal Signal-Interference Microstrip Lines. 2024 IEEE Radio and Wireless Symposium (RWS), 79-82. https://doi.org/10.1109/RWS56914.2024.10438619
Yi-Ming Chen, Sheng-Fuh Chang, Chia-Chan Chang, & Tin-Jae Hung. (2007). Design of Stepped-Impedance Combline Bandpass Filters With Symmetric Insertion-Loss Response and Wide Stopband Range. IEEE Transactions on Microwave Theory and Techniques, 55(10), 2191-2199. https://doi.org/10.1109/TMTT.2007.906482
Zhao, X.-B., Wei, F., Yang, L., & Gómez-García, R. (2024). Planar-Magic-T-Based Dual-Band Bandpass Filters. 2024 IEEE Radio and Wireless Symposium (RWS), 75-78. https://doi.org/10.1109/RWS56914.2024.10438662