Araştırma Makalesi
BibTex RIS Kaynak Göster

THE EFFECT OF SERIES RANGE SELECTION ON THE RESULT IN THE DESIGN PROBLEM OF A COMBLINE BAND PASS FILTER WITH DUAL BAND MICROSTRIP CONNECTION USING THE GOOSE ALGORITHM

Yıl 2024, , 557 - 571, 26.09.2024
https://doi.org/10.21923/jesd.1472691

Öz

Dual-band microwave bandpass filters have attracted great attention in recent developments to meet the demand in multiband radio wave and wireless applications. Optimization methods are frequently used to meet this need. Another big problem encountered here is the selection of the value width range of the input data sets to be selected in optimization. In this article, the contribution of the success of the selection of the input data set range on the optimization problem through a compact microstrip bandpass filter (BPF) optimization problem with spectrum bandpass for 2.8 GHz and 3.3 GHz for 5G wireless communication systems is presented. In the study, the high number of input parameters as well as the fact that the selected filter model is dual-band makes the optimization problem very difficult. For this reason, an up-to-date and very successful algorithm was preferred. The design results of the filter's S (dB) parameters were simulated using the MATLAB program. In addition, when the results of the selected intervals are considered as a table, it can be seen that quite variable success has been achieved. This shows that in optimization problems, width range selection in the input data set is of great importance.

Kaynakça

  • Al-Yasir, Y., Abd-Alhameed, R. A., Noras, J. M., Abdulkhaleq, A. M., & Parchin, N. O. (2018). Design of Very Compact Combline Band-Pass Filter for 5G Applications. Loughborough Antennas & Propagation Conference 2018 (LAPC 2018), 61 (4 pp.)-61 (4 pp.). https://doi.org/10.1049/cp.2018.1482
  • Andreica, S., Munteanu, C., Gliga, M., Giurgiuman, A., Pacurar, C., & Contantinescu, C. (2023). Development and Optimization of a Broadside-Coupled Dual-Band Microstrip Bandpass Filter for Wireless Communication Systems. 2023 10th International Conference on Modern Power Systems (MPS), 1-4. https://doi.org/10.1109/MPS58874.2023.10187504
  • Belen, A., & Belen, M. A. (2023). Data‐driven modeling of band‐pass filter for sub‐5G applications. Microwave and Optical Technology Letters, 65(8), 2210-2216. https://doi.org/10.1002/mop.33704
  • Belen, M. A., & Mahouti, P. (2019). 2.4ghz Akıllı Haberleşme Sistemleri İçin Sarmal Şekilli Frekans Seçici Yüzey Tasarımı. Mühendislik Bilimleri ve Tasarım Dergisi, 7(2), 381-385. https://doi.org/10.21923/jesd.468281
  • Damou, M., Chetioui, M., Gouni, S., Boudkhil, A., Bouhmidi, R., & Bouras, B. (2022). Optimization of Multi-Ports Combline Filter Using Admittance Extraction Technique. 2022 International Conference of Advanced Technology in Electronic and Electrical Engineering (ICATEEE), 1-5. https://doi.org/10.1109/ICATEEE57445.2022.10093720
  • Das, A., & Das, S. K. (2010). Microwave Engineering. Tata McGraw Hill Education Private Limited.
  • Farahani, H. S., Rezaee, B., & Bosch, W. (2021). Compact Filtering Power Divider with Distributed Combline Coupled-Resonators. 2021 IEEE MTT-S International Microwave Filter Workshop (IMFW), 85-87. https://doi.org/10.1109/IMFW49589.2021.9642331
  • Gomez-Garcia, R., & Yang, L. (2021). Spurious-Free Signal-Interference Dual-Band Bandpass Filters. 2021 IEEE MTT-S International Wireless Symposium (IWS), 1-3. https://doi.org/10.1109/IWS52775.2021.9499377
  • Göçen, C., Akdag, I., Belen, M. A., Mahouti, P., Kaya, A., & Palandöken, M. (2022). ISM 2.4 GHz Band Antenna Model for RF Energy Harvesting Systems. European Journal of Science and Technology. https://doi.org/10.31590/ejosat.1202107
  • Hamad, R. K., & Rashid, T. A. (2024). GOOSE algorithm: a powerful optimization tool for real-world engineering challenges and beyond. Evolving Systems. https://doi.org/10.1007/s12530-023-09553-6
  • Hong, J., & Lancaster, M. J. (2001). Microstrip Filters for RF/Microwave Applications. Wiley. https://doi.org/10.1002/0471221619
  • Hong-Ming Lee, Chung-Rung Chen, Chin-Chuan Tsai, & Chih-Ming Tsai. (t.y.). Dual-band coupling and feed structure for microstrip filter design. 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535), 1971-1974. https://doi.org/10.1109/MWSYM.2004.1338997
  • Jamshidi-Zarmehri, H., San-Blas, Á. A., Neshati, M. H., Cogollos, S., Sharma, A., Boria, V. E., & Coves, Á. (2023). Efficient Design Procedure for Combline Bandpass Filters With Advanced Electrical Responses. IEEE Access, 11, 52168-52184. https://doi.org/10.1109/ACCESS.2023.3278791
  • Kumar, B. P., & Baskar, R. (2022). Design of Dual Band Bandpass Filter for Reduced Insertion Loss and Comparison with Ultra Wide Band Filter. 2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS), 38-41. https://doi.org/10.1109/ICTACS56270.2022.9988240
  • Kumar, N., & Kumar, M. (2015). Dual-band bandpass filter for WLAN application using coupled three-line microstrip structure. 2015 2nd International Conference on Electronics and Communication Systems (ICECS), 868-870. https://doi.org/10.1109/ECS.2015.7125038
  • Kumar, P. (2015). Design of dual-band band pass filter using transmission line sections. 2015 Annual IEEE India Conference (INDICON), 1-4. https://doi.org/10.1109/INDICON.2015.7443421
  • Lin, S.-C., Wang, C.-H., Chen, Y.-W., & Chen, C. H. (2007). Improved Combline Bandpass Filter with Multiple Transmission Zeros. 2007 Asia-Pacific Microwave Conference, 1-4. https://doi.org/10.1109/APMC.2007.4554864
  • Maharjan, R. K., & Kim, N.-Y. (2014). Microstrip Bandpass Filters Using Window Hairpin Resonator and T-Feeder Coupling Lines. Arabian Journal for Science and Engineering, 39(5), 3989-3997. https://doi.org/10.1007/s13369-014-0997-7
  • Malki, M., Yang, L., & Gomez-Garcia, R. (2022). Input-Reflectionless Two-Branch Channelized Passive Dual-Band Bandpass Filters. 2022 52nd European Microwave Conference (EuMC), 325-328. https://doi.org/10.23919/EuMC54642.2022.9924315
  • Miyake, H., Kitazawa, S., Ishizaki, T., Yamada, T., & Nagatomi, Y. (t.y.). A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones. 1997 IEEE MTT-S International Microwave Symposium Digest, 789-792. https://doi.org/10.1109/MWSYM.1997.602908
  • Pozar, D. M. (2011). Microwave Engineering (4th.). John Wiley & Sons,.
  • Psychogiou, D., Gomez-Garcia, R., & Peroulis, D. (2018). RF Wide-Band Bandpass Filter With Dynamic In-Band Multi-Interference Suppression Capability. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(7), 898-902. https://doi.org/10.1109/TCSII.2017.2726145
  • Quendo, C., Rius, E., & Person, C. (t.y.). An original topology of dual-band filter with transmission zeros. IEEE MTT-S International Microwave Symposium Digest, 2003, 1093-1096. https://doi.org/10.1109/MWSYM.2003.1212559
  • Ragavi., B., Sharmila, S., Dharani, J., & Deepthika, K. (2023). Design of Dielectric coupled Line Resonator with Defector Ground Structure for Microwave frequency with Double Band Pass filter. 2023 International Conference on Computer Communication and Informatics (ICCCI), 1-6. https://doi.org/10.1109/ICCCI56745.2023.10128197
  • Rajendran, J. (2012). Design and Optimization of Band Pass Filter for SoftwareDefined Radio Telescope. International Journal of Information and Electronics Engineering. https://doi.org/10.7763/IJIEE.2012.V2.180
  • Rezaei, B., Pooyan, M., & Ershadi, T. Z. (2012). Using Microstrip Elements in Dual-band Bandpass Filter with Parallel Coupled-Lines and Space Mapping Technique. https://api.semanticscholar.org/CorpusID:55592881
  • Saad, M. R., Ambak, Z., Alias, R., Ibrahim, A., Shapee, S. M., Yusoff, M. Z. M., Yahya, M. R., & Mat, A. F. A. (2008). Designing 5GHz microstrip coupled line bandpass filter using LTCC technology. 2008 International Conference on Electronic Design, 1-4. https://doi.org/10.1109/ICED.2008.4786774
  • Shaman, H. N. (2012). New S-Band Bandpass Filter (BPF) With Wideband Passband for Wireless Communication Systems. IEEE Microwave and Wireless Components Letters, 22(5), 242-244. https://doi.org/10.1109/LMWC.2012.2190269
  • Sirci, S., Menargues, E., & Berry, S. (2021). Triangular Combline Filters Conceived for Additive Manufacturing. 2021 IEEE MTT-S International Microwave Filter Workshop (IMFW), 151-154. https://doi.org/10.1109/IMFW49589.2021.9642360
  • Tsai, L.-C., & Hsue, C.-W. (2004). Dual-Band Bandpass Filters Using Equal-Length Coupled-Serial-Shunted Lines and<tex>$ Z$</tex>-Transform Technique. IEEE Transactions on Microwave Theory and Techniques, 52(4), 1111-1117. https://doi.org/10.1109/TMTT.2004.825680
  • Uluslu, A. (2021). Design of Microstrip Filter by Modeling with Reduced Data. The Applied Computational Electromagnetics Society Journal (ACES). https://doi.org/10.13052/2021.ACES.J.361109
  • Uluslu, A. (2022). Chameleon Swarm Algorithm Assisted Optimization of U-Slot Patch Antenna for Quad-Band Applications. IEEE Access, 10, 74152-74163. https://doi.org/10.1109/ACCESS.2022.3190378
  • Uluslu, A. (2022). Çok Amaçlı Evrimsel Algoritmalar İle Filtre Tasarımı. Mühendislik Bilimleri ve Tasarım Dergisi, 10(1), 201-216. https://doi.org/10.21923/jesd.935175
  • Uluslu, A. (2023). Fitting nonlinear mathematical models to the cost function of the quadrafilar helix antenna optimization problem. Analog Integrated Circuits and Signal Processing, 115(3), 307-318. https://doi.org/10.1007/s10470-023-02174-8
  • Wan, Y., Zhou, J., Rao, Y., Xie, J., Li, Q., & Luo, X. (2023). Independently Tunable Compact Dual-Band Bandpass Filter With High Selectivity and Wide Stopband Using Multilayer Folded Dual-Mode SIDGS Resonator. 2023 IEEE/MTT-S International Microwave Symposium - IMS 2023, 827-830. https://doi.org/10.1109/IMS37964.2023.10187986
  • Yang, L., Malki, M., & Gómez-García, R. (2024). Multilayer Dual-Band Bandpass Filter Using Microstrip-to-Slotline Transitions and Transversal Signal-Interference Microstrip Lines. 2024 IEEE Radio and Wireless Symposium (RWS), 79-82. https://doi.org/10.1109/RWS56914.2024.10438619
  • Yi-Ming Chen, Sheng-Fuh Chang, Chia-Chan Chang, & Tin-Jae Hung. (2007). Design of Stepped-Impedance Combline Bandpass Filters With Symmetric Insertion-Loss Response and Wide Stopband Range. IEEE Transactions on Microwave Theory and Techniques, 55(10), 2191-2199. https://doi.org/10.1109/TMTT.2007.906482
  • Zhao, X.-B., Wei, F., Yang, L., & Gómez-García, R. (2024). Planar-Magic-T-Based Dual-Band Bandpass Filters. 2024 IEEE Radio and Wireless Symposium (RWS), 75-78. https://doi.org/10.1109/RWS56914.2024.10438662

GOOSE ALGORİTMASI KULLANILARAK ÇİFT BANTLI MİKROŞERİT BAĞLANTILI KOMBİNE BANT GEÇİREN FİLTRE TASARIM PROBLEMİNDE DİZİ ARALIK SEÇİMİNİN SONUÇ ÜZERİNDEKİ ETKİSİ

Yıl 2024, , 557 - 571, 26.09.2024
https://doi.org/10.21923/jesd.1472691

Öz

Çift bantlı mikrodalga bant geçiren filtreler, çok bantlı radyo dalgası ve kablosuz uygulamalardaki talebi karşılamak için son gelişmelerde büyük ilgi görmüştür. Bu ihtiyacı karşılamak için optimizasyon yöntemlerine sıkça başvurulmaktadır. Burada karşılaşılan bir diğer büyük problem ise optimizasyonda seçilecek giriş veri setlerinin değer genişlik aralığının seçimidir. Bu makalede, 5G kablosuz iletişim sistemleri için 2,8 GHz ve 3,3 GHz için spektrum bant geçiren kompakt bir mikroşerit bant geçiren filtre (BGF) optimizasyon problemi üzerinden giriş veri seti aralığının seçiminin optimizasyon problemi üzerindeki başarısının katkısı sunulmaktadır. Yapılan çalışmada giriş parametre sayısının yüksekliğinin yanı sıra seçilen filtre modelinin çift bantlı olması optimizasyon problemini oldukça zorlaştırmaktadır. Bu nedenle algoritma olarak güncel ve oldukça başarılı bir algoritma tercih edilmiştir. Tasarım sonuçları MATLAB programı kullanılarak filtrenin S (dB) parametreleri simülasyon olarak sergilenmiştir. Ayrıca seçilen aralıkların sonuçları tablo olarak ele alındığında oldukça değişken başarılar elde edildiği görülmektedir. Buda optimizasyon problemlerinde, giriş veri setinde genişlik aralık seçimi büyük önem arz ettiğini göstermektedir.

Kaynakça

  • Al-Yasir, Y., Abd-Alhameed, R. A., Noras, J. M., Abdulkhaleq, A. M., & Parchin, N. O. (2018). Design of Very Compact Combline Band-Pass Filter for 5G Applications. Loughborough Antennas & Propagation Conference 2018 (LAPC 2018), 61 (4 pp.)-61 (4 pp.). https://doi.org/10.1049/cp.2018.1482
  • Andreica, S., Munteanu, C., Gliga, M., Giurgiuman, A., Pacurar, C., & Contantinescu, C. (2023). Development and Optimization of a Broadside-Coupled Dual-Band Microstrip Bandpass Filter for Wireless Communication Systems. 2023 10th International Conference on Modern Power Systems (MPS), 1-4. https://doi.org/10.1109/MPS58874.2023.10187504
  • Belen, A., & Belen, M. A. (2023). Data‐driven modeling of band‐pass filter for sub‐5G applications. Microwave and Optical Technology Letters, 65(8), 2210-2216. https://doi.org/10.1002/mop.33704
  • Belen, M. A., & Mahouti, P. (2019). 2.4ghz Akıllı Haberleşme Sistemleri İçin Sarmal Şekilli Frekans Seçici Yüzey Tasarımı. Mühendislik Bilimleri ve Tasarım Dergisi, 7(2), 381-385. https://doi.org/10.21923/jesd.468281
  • Damou, M., Chetioui, M., Gouni, S., Boudkhil, A., Bouhmidi, R., & Bouras, B. (2022). Optimization of Multi-Ports Combline Filter Using Admittance Extraction Technique. 2022 International Conference of Advanced Technology in Electronic and Electrical Engineering (ICATEEE), 1-5. https://doi.org/10.1109/ICATEEE57445.2022.10093720
  • Das, A., & Das, S. K. (2010). Microwave Engineering. Tata McGraw Hill Education Private Limited.
  • Farahani, H. S., Rezaee, B., & Bosch, W. (2021). Compact Filtering Power Divider with Distributed Combline Coupled-Resonators. 2021 IEEE MTT-S International Microwave Filter Workshop (IMFW), 85-87. https://doi.org/10.1109/IMFW49589.2021.9642331
  • Gomez-Garcia, R., & Yang, L. (2021). Spurious-Free Signal-Interference Dual-Band Bandpass Filters. 2021 IEEE MTT-S International Wireless Symposium (IWS), 1-3. https://doi.org/10.1109/IWS52775.2021.9499377
  • Göçen, C., Akdag, I., Belen, M. A., Mahouti, P., Kaya, A., & Palandöken, M. (2022). ISM 2.4 GHz Band Antenna Model for RF Energy Harvesting Systems. European Journal of Science and Technology. https://doi.org/10.31590/ejosat.1202107
  • Hamad, R. K., & Rashid, T. A. (2024). GOOSE algorithm: a powerful optimization tool for real-world engineering challenges and beyond. Evolving Systems. https://doi.org/10.1007/s12530-023-09553-6
  • Hong, J., & Lancaster, M. J. (2001). Microstrip Filters for RF/Microwave Applications. Wiley. https://doi.org/10.1002/0471221619
  • Hong-Ming Lee, Chung-Rung Chen, Chin-Chuan Tsai, & Chih-Ming Tsai. (t.y.). Dual-band coupling and feed structure for microstrip filter design. 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535), 1971-1974. https://doi.org/10.1109/MWSYM.2004.1338997
  • Jamshidi-Zarmehri, H., San-Blas, Á. A., Neshati, M. H., Cogollos, S., Sharma, A., Boria, V. E., & Coves, Á. (2023). Efficient Design Procedure for Combline Bandpass Filters With Advanced Electrical Responses. IEEE Access, 11, 52168-52184. https://doi.org/10.1109/ACCESS.2023.3278791
  • Kumar, B. P., & Baskar, R. (2022). Design of Dual Band Bandpass Filter for Reduced Insertion Loss and Comparison with Ultra Wide Band Filter. 2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS), 38-41. https://doi.org/10.1109/ICTACS56270.2022.9988240
  • Kumar, N., & Kumar, M. (2015). Dual-band bandpass filter for WLAN application using coupled three-line microstrip structure. 2015 2nd International Conference on Electronics and Communication Systems (ICECS), 868-870. https://doi.org/10.1109/ECS.2015.7125038
  • Kumar, P. (2015). Design of dual-band band pass filter using transmission line sections. 2015 Annual IEEE India Conference (INDICON), 1-4. https://doi.org/10.1109/INDICON.2015.7443421
  • Lin, S.-C., Wang, C.-H., Chen, Y.-W., & Chen, C. H. (2007). Improved Combline Bandpass Filter with Multiple Transmission Zeros. 2007 Asia-Pacific Microwave Conference, 1-4. https://doi.org/10.1109/APMC.2007.4554864
  • Maharjan, R. K., & Kim, N.-Y. (2014). Microstrip Bandpass Filters Using Window Hairpin Resonator and T-Feeder Coupling Lines. Arabian Journal for Science and Engineering, 39(5), 3989-3997. https://doi.org/10.1007/s13369-014-0997-7
  • Malki, M., Yang, L., & Gomez-Garcia, R. (2022). Input-Reflectionless Two-Branch Channelized Passive Dual-Band Bandpass Filters. 2022 52nd European Microwave Conference (EuMC), 325-328. https://doi.org/10.23919/EuMC54642.2022.9924315
  • Miyake, H., Kitazawa, S., Ishizaki, T., Yamada, T., & Nagatomi, Y. (t.y.). A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones. 1997 IEEE MTT-S International Microwave Symposium Digest, 789-792. https://doi.org/10.1109/MWSYM.1997.602908
  • Pozar, D. M. (2011). Microwave Engineering (4th.). John Wiley & Sons,.
  • Psychogiou, D., Gomez-Garcia, R., & Peroulis, D. (2018). RF Wide-Band Bandpass Filter With Dynamic In-Band Multi-Interference Suppression Capability. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(7), 898-902. https://doi.org/10.1109/TCSII.2017.2726145
  • Quendo, C., Rius, E., & Person, C. (t.y.). An original topology of dual-band filter with transmission zeros. IEEE MTT-S International Microwave Symposium Digest, 2003, 1093-1096. https://doi.org/10.1109/MWSYM.2003.1212559
  • Ragavi., B., Sharmila, S., Dharani, J., & Deepthika, K. (2023). Design of Dielectric coupled Line Resonator with Defector Ground Structure for Microwave frequency with Double Band Pass filter. 2023 International Conference on Computer Communication and Informatics (ICCCI), 1-6. https://doi.org/10.1109/ICCCI56745.2023.10128197
  • Rajendran, J. (2012). Design and Optimization of Band Pass Filter for SoftwareDefined Radio Telescope. International Journal of Information and Electronics Engineering. https://doi.org/10.7763/IJIEE.2012.V2.180
  • Rezaei, B., Pooyan, M., & Ershadi, T. Z. (2012). Using Microstrip Elements in Dual-band Bandpass Filter with Parallel Coupled-Lines and Space Mapping Technique. https://api.semanticscholar.org/CorpusID:55592881
  • Saad, M. R., Ambak, Z., Alias, R., Ibrahim, A., Shapee, S. M., Yusoff, M. Z. M., Yahya, M. R., & Mat, A. F. A. (2008). Designing 5GHz microstrip coupled line bandpass filter using LTCC technology. 2008 International Conference on Electronic Design, 1-4. https://doi.org/10.1109/ICED.2008.4786774
  • Shaman, H. N. (2012). New S-Band Bandpass Filter (BPF) With Wideband Passband for Wireless Communication Systems. IEEE Microwave and Wireless Components Letters, 22(5), 242-244. https://doi.org/10.1109/LMWC.2012.2190269
  • Sirci, S., Menargues, E., & Berry, S. (2021). Triangular Combline Filters Conceived for Additive Manufacturing. 2021 IEEE MTT-S International Microwave Filter Workshop (IMFW), 151-154. https://doi.org/10.1109/IMFW49589.2021.9642360
  • Tsai, L.-C., & Hsue, C.-W. (2004). Dual-Band Bandpass Filters Using Equal-Length Coupled-Serial-Shunted Lines and<tex>$ Z$</tex>-Transform Technique. IEEE Transactions on Microwave Theory and Techniques, 52(4), 1111-1117. https://doi.org/10.1109/TMTT.2004.825680
  • Uluslu, A. (2021). Design of Microstrip Filter by Modeling with Reduced Data. The Applied Computational Electromagnetics Society Journal (ACES). https://doi.org/10.13052/2021.ACES.J.361109
  • Uluslu, A. (2022). Chameleon Swarm Algorithm Assisted Optimization of U-Slot Patch Antenna for Quad-Band Applications. IEEE Access, 10, 74152-74163. https://doi.org/10.1109/ACCESS.2022.3190378
  • Uluslu, A. (2022). Çok Amaçlı Evrimsel Algoritmalar İle Filtre Tasarımı. Mühendislik Bilimleri ve Tasarım Dergisi, 10(1), 201-216. https://doi.org/10.21923/jesd.935175
  • Uluslu, A. (2023). Fitting nonlinear mathematical models to the cost function of the quadrafilar helix antenna optimization problem. Analog Integrated Circuits and Signal Processing, 115(3), 307-318. https://doi.org/10.1007/s10470-023-02174-8
  • Wan, Y., Zhou, J., Rao, Y., Xie, J., Li, Q., & Luo, X. (2023). Independently Tunable Compact Dual-Band Bandpass Filter With High Selectivity and Wide Stopband Using Multilayer Folded Dual-Mode SIDGS Resonator. 2023 IEEE/MTT-S International Microwave Symposium - IMS 2023, 827-830. https://doi.org/10.1109/IMS37964.2023.10187986
  • Yang, L., Malki, M., & Gómez-García, R. (2024). Multilayer Dual-Band Bandpass Filter Using Microstrip-to-Slotline Transitions and Transversal Signal-Interference Microstrip Lines. 2024 IEEE Radio and Wireless Symposium (RWS), 79-82. https://doi.org/10.1109/RWS56914.2024.10438619
  • Yi-Ming Chen, Sheng-Fuh Chang, Chia-Chan Chang, & Tin-Jae Hung. (2007). Design of Stepped-Impedance Combline Bandpass Filters With Symmetric Insertion-Loss Response and Wide Stopband Range. IEEE Transactions on Microwave Theory and Techniques, 55(10), 2191-2199. https://doi.org/10.1109/TMTT.2007.906482
  • Zhao, X.-B., Wei, F., Yang, L., & Gómez-García, R. (2024). Planar-Magic-T-Based Dual-Band Bandpass Filters. 2024 IEEE Radio and Wireless Symposium (RWS), 75-78. https://doi.org/10.1109/RWS56914.2024.10438662
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik Elektromanyetiği, İletişim Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Ahmet Uluslu 0000-0002-5580-1687

Kervendurdy Allaberdiyev 0009-0000-2685-7860

Yayımlanma Tarihi 26 Eylül 2024
Gönderilme Tarihi 24 Nisan 2024
Kabul Tarihi 23 Ağustos 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Uluslu, A., & Allaberdiyev, K. (2024). GOOSE ALGORİTMASI KULLANILARAK ÇİFT BANTLI MİKROŞERİT BAĞLANTILI KOMBİNE BANT GEÇİREN FİLTRE TASARIM PROBLEMİNDE DİZİ ARALIK SEÇİMİNİN SONUÇ ÜZERİNDEKİ ETKİSİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 12(3), 557-571. https://doi.org/10.21923/jesd.1472691