In this study, some durability properties of microwave-cured fly ash-, pumice-, perlite-, and burnt clay-based geopolymer mortars were investigated comparatively with those of the conventional oven-cured geopolymer mortars. In this context, alkali-silica reaction, sorptivity and abrasion resistance tests were carried out, and the microstructures of the pastes were examined using scanning electron microscope to investigate the relationship between durability and microstructure. In order to compare the durability properties of geopolymer mortars, portland cement mortars with similar compressive strength were produced. Results indicated that geopolymer mortars exhibit no expansion due to alkali-silica reaction, while their abrasion resistance was comparable to that of the cement mortars. The sorptivity test and scanning electron microscope examinations revealed that the type of aluminosilicate and curing method influence the capillary water absorption rate. Pumice-, perlite-, and burnt clay-based geopolymer mortars demonstrated rapid water sorptivity. The fact was attributed to the presence of considerable amount of pores in the microstructure, as provided by electron microscope images.
Acar, M.C., Şener, A., Özbayrak, A., Çelik, A.İ, 2020. Geopolimer Harçlarda Zeolit Katkısının Etkisi, Mühendislik Bilimleri ve Tasarım Dergisi 8(3), 820-832. https://doi.org/10.21923/jesd.768565
Adam, A.A., Molyneaux, T.C.K., Patnaikuni, I., Law, D.W., 2009. Strength, Sorptivity and Carbonation in Blended OPC-GGBS, Alkali Activated Slag, and Fly Ash Based Geopolymer Concrete, Challenges, Opportunities and Solutions in Structural Engineering and Construction 563-568.
Al-Azzawi, Z.H.N., 2019, Investigation of Durability Properties of Geopolymer Containing Metakaolin, Ph. D. Thesis, Erciyes University Graduate School of Natural and Applied Science, 141p.
Amin, M., Elsakhawy, Y., Abu El-Hassan, K., Abdelsalam, B.A., 2022. Behavior Evaluation of Sustainable High Strength Geopolymer Concrete Based on Fly Ash, Metakaolin, and Slag. Case Studies in Construction Materials 16, e00976. https://doi.org/10.1016/j.cscm.2022.e00976
Aschoff, J., Partschefeld, S., Schneider, J., Osburg, A., 2024. Effect of Microwaves on the Rapid Curing of Metakaolin- and Aluminum Orthophosphate-Based Geopolymers. Materials 17, 463. https://doi.org/10.3390/ma17020463
Badkul, A., Paswan, R., Singh, S.K., Tegar, J.P., 2021. A Comprehensive Study on the Performance of Alkali Activated Fly Ash/GGBFS Geopolymer Concrete Pavement. Road Materials and Pavement Design 23, 1815–1835. https://doi.org/10.1080/14680629.2021.1926311
Diksha, Dev, N., Goyal, P.K., 2023. Prediction of Compressive Strength of Alccofine-Based Geopolymer Concrete. Iranian Journal of Science and Technology, Transactions of Civil Engineering. https://doi.org/10.1007/s40996-023-01308-2
Ekiz Barış, K., 2024. Doğal Puzolan-esaslı Jeopolimer Üretiminde Mikrodalga Kürünün Rolü, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39(4), 2239-2251. https://doi.org/10.17341/gazimmfd.1267017
Gultekin, A., Ramyar, K., 2022. Effect of Curing Type on Microstructure and Compressive Strength of Geopolymer Mortars. Ceramics International, 48, 16156–16172. https://doi.org/10.1016/j.ceramint.2022.02.163
Gultekin, A., 2024. Compressive Strength and Microstructure of Microwave-Cured Waste Brick Powder-Based Geopolymer Mortars, Iranian Journal of Science and Technology, Transactions of Civil Engineering 48, 3119–3133. https://doi.org/10.1007/s40996-023-01330-4
Hossain, M.M., Karim, M.R., A Elahi, M.M., Mohd Zain, M.F., 2020. Water Absorption and Sorptivity of Alkali-Activated Ternary Blended Composite Binder. Journal of Building Engineering 31, 101370. https://doi.org/10.1016/j.jobe.2020.101370
Jacob, A., Ephraim, E.K., Muhammad, M., 2020. Properties of Metakaolin Based Geopolymer Concrete Made with Recycled Concrete Aggregate. International Journal of Research and Innovation in Applied Science, 5, 10, 57-63
Kanagaraj, B., Anand, N., Samuvel Raj, R., Lubloy, E., 2023. Techno-Socio-Economic Aspects of Portland Cement, Geopolymer, and Limestone Calcined Clay Cement (LC3) Composite Systems: A-State-Of-Art-Review. Construction and Building Materials 398, 132484. https://doi.org/10.1016/j.conbuildmat.2023.132484
Khalid, S.M., Shobha, M.S., 2024. Effect of Ternary Blends on Mechanical Strength, Durability and Microstructural Properties of Geopolymer Concrete. Iranian Journal of Science and Technology, Transactions of Civil Engineering. https://doi.org/10.1007/s40996-023-01241-4
Li, K.L., Huang, G.H., Jiang, L.H., Cai, Y.B., Chen, J., Ding, J.T., 2006. Study on Abilities of Mineral Admixtures and Geopolymer to Restrain ASR. Key Engineering Materials 302–303, 248–254. https://doi.org/10.4028/www.scientific.net/KEM.302-303.248
Luhar, S., Luhar, I., Nicolaides, D., Gupta, R., 2021. Durability Performance Evaluation of Rubberized Geopolymer Concrete. Sustainability 13, 5969. https://doi.org/10.3390/su13115969
Nadeem, M., Haq, E.U., Ahmed, F., Rafiq, M.S., Awan, G.H., Zain-ul-Abdein, M., 2020. Effect of Microwave Curing on the Construction Properties of Natural Soil Based Geopolymer Foam, Construction and Building Materials 230, 117074. https://doi.org/10.1016/j.conbuildmat.2019.117074
Ng, C., Alengaram, U.J., Wong, L.S., Mo, K.H., Jumaat, M.Z., Ramesh, S., 2018. A Review on Microstructural Study and Compressive Strength of Geopolymer Mortar, Paste and Concrete. Construction and Building Materials 186, 550–576. https://doi.org/10.1016/j.conbuildmat.2018.07.075
Nurruddin, M.F., Haruna, S., Mohammed, B.S., Shaaban, I.G., 2018. Methods of Curing Geopolymer Concrete: A Review. International Journal of Advanced and Applied Sciences. 5, 31–36. https://doi.org/10.21833/ijaas.2018.01.005
Pouhet, R., Cyr, M., Multon, S., 2016. Can Metakaolin-Based Geopolymers Suffer from Alkali–Silica Reaction. 5th International Conference on Alkali-Aggregate Reaction, Sao Paulo, Brazil.
Pradhan, P., Dwibedy, S., Pradhan, M., Panda, S., Panigrahi, S.K., 2022. Durability Characteristics of Geopolymer Concrete - Progress and Perspectives. Journal of Building Engineering 59, 105100. https://doi.org/10.1016/j.jobe.2022.105100
Shaikh, F.U.A., 2014. Effects of Alkali Solutions on Corrosion Durability of Geopolymer Concrete. Advances in Concrete Construction, 2, 109–123. https://doi.org/10.12989/ACC.2014.2.2.109
Shi, C., Shi, Z., Hu, X., Zhao, R., Chong, L., 2015. A Review on Alkali-Aggregate Reactions in Alkali-Activated Mortars/Concretes Made With Alkali-Reactive Aggregates. Materials and Structures 48, 621–628. https://doi.org/10.1617/s11527-014-0505-2
Shi, S., Li, H., Fabian, M., Sun, T., Grattan, K.T.V., Xu, D., Basheer, P.A.M., Bai, Y., 2016. Alkali-Activated Fly Ash Manufactured with Multi-stage Microwave Curing, Fourth International Conference on Sustainable Construction Materials and Technologies, Las Vegas, USA.
Somaratna, J., Ravikumar, D., Neithalath, N., 2010. Response of alkali activated fly ash mortars to microwave curing, Cement and Concrete Research 40, 1688–1696. https://doi.org/10.1016/j.cemconres.2010.08.010
Thompson, A., Saha, A.K., Sarker, P.K., 2019. Comparison of the Alkali-Silica Reactions of Ferronickel Slag Aggregate in Fly Ash Geopolymer and Cement Mortars. European Journal of Environmental and Civil Engineering 26, 891–904. https://doi.org/10.1080/19648189.2019.1686068
Yang, K., Yang, C., Magee, B., Nanukuttan, S., Ye, J., 2016. Establishment of a Preconditioning Regime for Air Permeability and Sorptivity of Alkali-Activated Slag Concrete. Cement and Concrete Composites 73, 19–28. https://doi.org/10.1016/j.cemconcomp.2016.06.019
Zhang, B., 2024. Durability of Low-carbon Geopolymer Concrete: A Critical Review. Sustainable Materials and Technologies 40, e00882. https://doi.org/10.1016/j.susmat.2024.e00882
Zhao, R., Sanjayan, J.G., 2011. Geopolymer and Portland Cement Concretes in Simulated Fire. Magazine of Concrete Research 63, 163–173. https://doi.org/10.1680/macr.9.00110
Bu çalışmada, mikrodalga kürü ile üretilen uçucu kül, pomza, perlit ve pişirilmiş kil esaslı geopolimer harçların bazı durabilite özellikleri incelenmiş ve elde edilen sonuçlar geleneksel etüv kürü ile üretilen serilerle kıyaslanmıştır. Bu kapsamda alkali-silis reaksiyonu direnci, kılcal su emme hızı, aşınma direnci deneyleri yapılmış, ayrıca hamur mikro yapıları taramalı elektron mikroskobu ile incelenerek durabilite-içyapı ilişkisi irdelenmiştir. Geopolimer harçların durabilite özelliklerinin karşılaştırılması amacıyla, incelenen harca benzer basınç dayanımına sahip portland çimentolu harçlar üretilmiş ve iki sistemin durabilite konusundaki avantaj ve dezavantajları araştırılmıştır. Geopolimer harçlarda alkali-silis reaksiyonundan kaynaklanan bir genleşme yaşanmadığı ve geopolimer harçların aşınma dirençlerinin, çimento harçları ile kıyaslanabilecek seviyelerde olduğu tespit edilmiştir. Kılcallık deneyi ve taramalı elektron mikroskobu incelemelerinde elde edilen bulgular, alüminosilikat tipi ve kür yönteminin kılcal su emme hızı üzerinde etkili olduğunu; pomza, perlit ve pişirilmiş kil esaslı geopolimer harçların kılcal yolla hızlı bir şekilde su emebildiklerini, bunun da boşluklu mikro yapıdan kaynaklandığını göstermiştir.
Bu çalışma 119M950 proje kodu ile TÜBİTAK tarafından desteklenmiştir. Desteklerinden ötürü TÜBİTAK'a teşekkürlerimizi sunarız.
Kaynakça
Acar, M.C., Şener, A., Özbayrak, A., Çelik, A.İ, 2020. Geopolimer Harçlarda Zeolit Katkısının Etkisi, Mühendislik Bilimleri ve Tasarım Dergisi 8(3), 820-832. https://doi.org/10.21923/jesd.768565
Adam, A.A., Molyneaux, T.C.K., Patnaikuni, I., Law, D.W., 2009. Strength, Sorptivity and Carbonation in Blended OPC-GGBS, Alkali Activated Slag, and Fly Ash Based Geopolymer Concrete, Challenges, Opportunities and Solutions in Structural Engineering and Construction 563-568.
Al-Azzawi, Z.H.N., 2019, Investigation of Durability Properties of Geopolymer Containing Metakaolin, Ph. D. Thesis, Erciyes University Graduate School of Natural and Applied Science, 141p.
Amin, M., Elsakhawy, Y., Abu El-Hassan, K., Abdelsalam, B.A., 2022. Behavior Evaluation of Sustainable High Strength Geopolymer Concrete Based on Fly Ash, Metakaolin, and Slag. Case Studies in Construction Materials 16, e00976. https://doi.org/10.1016/j.cscm.2022.e00976
Aschoff, J., Partschefeld, S., Schneider, J., Osburg, A., 2024. Effect of Microwaves on the Rapid Curing of Metakaolin- and Aluminum Orthophosphate-Based Geopolymers. Materials 17, 463. https://doi.org/10.3390/ma17020463
Badkul, A., Paswan, R., Singh, S.K., Tegar, J.P., 2021. A Comprehensive Study on the Performance of Alkali Activated Fly Ash/GGBFS Geopolymer Concrete Pavement. Road Materials and Pavement Design 23, 1815–1835. https://doi.org/10.1080/14680629.2021.1926311
Diksha, Dev, N., Goyal, P.K., 2023. Prediction of Compressive Strength of Alccofine-Based Geopolymer Concrete. Iranian Journal of Science and Technology, Transactions of Civil Engineering. https://doi.org/10.1007/s40996-023-01308-2
Ekiz Barış, K., 2024. Doğal Puzolan-esaslı Jeopolimer Üretiminde Mikrodalga Kürünün Rolü, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39(4), 2239-2251. https://doi.org/10.17341/gazimmfd.1267017
Gultekin, A., Ramyar, K., 2022. Effect of Curing Type on Microstructure and Compressive Strength of Geopolymer Mortars. Ceramics International, 48, 16156–16172. https://doi.org/10.1016/j.ceramint.2022.02.163
Gultekin, A., 2024. Compressive Strength and Microstructure of Microwave-Cured Waste Brick Powder-Based Geopolymer Mortars, Iranian Journal of Science and Technology, Transactions of Civil Engineering 48, 3119–3133. https://doi.org/10.1007/s40996-023-01330-4
Hossain, M.M., Karim, M.R., A Elahi, M.M., Mohd Zain, M.F., 2020. Water Absorption and Sorptivity of Alkali-Activated Ternary Blended Composite Binder. Journal of Building Engineering 31, 101370. https://doi.org/10.1016/j.jobe.2020.101370
Jacob, A., Ephraim, E.K., Muhammad, M., 2020. Properties of Metakaolin Based Geopolymer Concrete Made with Recycled Concrete Aggregate. International Journal of Research and Innovation in Applied Science, 5, 10, 57-63
Kanagaraj, B., Anand, N., Samuvel Raj, R., Lubloy, E., 2023. Techno-Socio-Economic Aspects of Portland Cement, Geopolymer, and Limestone Calcined Clay Cement (LC3) Composite Systems: A-State-Of-Art-Review. Construction and Building Materials 398, 132484. https://doi.org/10.1016/j.conbuildmat.2023.132484
Khalid, S.M., Shobha, M.S., 2024. Effect of Ternary Blends on Mechanical Strength, Durability and Microstructural Properties of Geopolymer Concrete. Iranian Journal of Science and Technology, Transactions of Civil Engineering. https://doi.org/10.1007/s40996-023-01241-4
Li, K.L., Huang, G.H., Jiang, L.H., Cai, Y.B., Chen, J., Ding, J.T., 2006. Study on Abilities of Mineral Admixtures and Geopolymer to Restrain ASR. Key Engineering Materials 302–303, 248–254. https://doi.org/10.4028/www.scientific.net/KEM.302-303.248
Luhar, S., Luhar, I., Nicolaides, D., Gupta, R., 2021. Durability Performance Evaluation of Rubberized Geopolymer Concrete. Sustainability 13, 5969. https://doi.org/10.3390/su13115969
Nadeem, M., Haq, E.U., Ahmed, F., Rafiq, M.S., Awan, G.H., Zain-ul-Abdein, M., 2020. Effect of Microwave Curing on the Construction Properties of Natural Soil Based Geopolymer Foam, Construction and Building Materials 230, 117074. https://doi.org/10.1016/j.conbuildmat.2019.117074
Ng, C., Alengaram, U.J., Wong, L.S., Mo, K.H., Jumaat, M.Z., Ramesh, S., 2018. A Review on Microstructural Study and Compressive Strength of Geopolymer Mortar, Paste and Concrete. Construction and Building Materials 186, 550–576. https://doi.org/10.1016/j.conbuildmat.2018.07.075
Nurruddin, M.F., Haruna, S., Mohammed, B.S., Shaaban, I.G., 2018. Methods of Curing Geopolymer Concrete: A Review. International Journal of Advanced and Applied Sciences. 5, 31–36. https://doi.org/10.21833/ijaas.2018.01.005
Pouhet, R., Cyr, M., Multon, S., 2016. Can Metakaolin-Based Geopolymers Suffer from Alkali–Silica Reaction. 5th International Conference on Alkali-Aggregate Reaction, Sao Paulo, Brazil.
Pradhan, P., Dwibedy, S., Pradhan, M., Panda, S., Panigrahi, S.K., 2022. Durability Characteristics of Geopolymer Concrete - Progress and Perspectives. Journal of Building Engineering 59, 105100. https://doi.org/10.1016/j.jobe.2022.105100
Shaikh, F.U.A., 2014. Effects of Alkali Solutions on Corrosion Durability of Geopolymer Concrete. Advances in Concrete Construction, 2, 109–123. https://doi.org/10.12989/ACC.2014.2.2.109
Shi, C., Shi, Z., Hu, X., Zhao, R., Chong, L., 2015. A Review on Alkali-Aggregate Reactions in Alkali-Activated Mortars/Concretes Made With Alkali-Reactive Aggregates. Materials and Structures 48, 621–628. https://doi.org/10.1617/s11527-014-0505-2
Shi, S., Li, H., Fabian, M., Sun, T., Grattan, K.T.V., Xu, D., Basheer, P.A.M., Bai, Y., 2016. Alkali-Activated Fly Ash Manufactured with Multi-stage Microwave Curing, Fourth International Conference on Sustainable Construction Materials and Technologies, Las Vegas, USA.
Somaratna, J., Ravikumar, D., Neithalath, N., 2010. Response of alkali activated fly ash mortars to microwave curing, Cement and Concrete Research 40, 1688–1696. https://doi.org/10.1016/j.cemconres.2010.08.010
Thompson, A., Saha, A.K., Sarker, P.K., 2019. Comparison of the Alkali-Silica Reactions of Ferronickel Slag Aggregate in Fly Ash Geopolymer and Cement Mortars. European Journal of Environmental and Civil Engineering 26, 891–904. https://doi.org/10.1080/19648189.2019.1686068
Yang, K., Yang, C., Magee, B., Nanukuttan, S., Ye, J., 2016. Establishment of a Preconditioning Regime for Air Permeability and Sorptivity of Alkali-Activated Slag Concrete. Cement and Concrete Composites 73, 19–28. https://doi.org/10.1016/j.cemconcomp.2016.06.019
Zhang, B., 2024. Durability of Low-carbon Geopolymer Concrete: A Critical Review. Sustainable Materials and Technologies 40, e00882. https://doi.org/10.1016/j.susmat.2024.e00882
Zhao, R., Sanjayan, J.G., 2011. Geopolymer and Portland Cement Concretes in Simulated Fire. Magazine of Concrete Research 63, 163–173. https://doi.org/10.1680/macr.9.00110