BİR TOP-ROBOT'UN TASARIMI, MODELLENMESİ VE DENEYSEL İNCELENMESİ
Yıl 2025,
Cilt: 13 Sayı: 4, 1165 - 1177, 30.12.2025
Hazin İnci
,
Hüseyin Deniz Öztürk
,
Erman Selim
,
Enver Tatlıcıoğlu
Öz
Bu çalışmada, top-robot sisteminin temel yapısı, dinamikleri ve hareket kabiliyetleri deneysel olarak incelenmiştir. Sistem tasarımında eyleyici olarak adım motorlar, tekerlek olarak tek sıra tüm yönlü tekerlekler ve kontrol birimi olarak STM32 mikrodenetleyici kullanılmıştır. Tekerlekler, aralarında 120°’lik açı ve zenit açısı da 45° olacak şekilde konumlandırılmıştır. Sistemdeki Atalet Ölçüm Birimi (IMU)’dan elde edilen Euler açıları verileri, doğruluğu artırmak amacıyla Genişletilmiş Kalman Filtresi (EKF) ile işlenmiştir. STM32 üzerinde çalışan çoklu görevlerin yönetimi ve performans takibi için iş parçacığı öncelikleri ve yürütme süreleri osiloskop kullanılarak izlenmiştir. Top-robot’un kinematik modeli çıkarılıp hem dengeleme hem de konum takibi için bir Oransal Türevsel (PD) denetleyici yapısı kullanılmıştır. Eğim hatasını dengelemek ve robotu istenen yöne sürmek amacıyla iki PD bileşeni toplamı uygulanmıştır. Gerçekleştirilen deneyler, sistemin dengede kalma yeteneğini ve kontrol algoritmasının etkinliğini başarılı bir şekilde göstermiştir. Çalışma, teorik modellerin ve PD kontrol stratejisinin pratikte uygulanabilirliğini doğrulamakta ve deneysel bir referans sağlamaktadır.
Etik Beyan
Yazarlar tarafından herhangi bir çıkar çatışması beyan edilmemiştir.
Destekleyen Kurum
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)
Teşekkür
Bu çalışma Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 121E296 numaralı hibe ile desteklenmiştir. Yazarlar desteklerinden dolayı TÜBİTAK'a teşekkür eder.
Kaynakça
-
Alyousify, M.A., Abbas, H.S., Hassan, M.M., Amin, M.H., 2022. Parameter identification and control of a ball balancing robot. 2022 8th International Conference on Mechatronics and Robotics Engineering (ICMRE), 91–97. IEEE.
-
Cu, M.-P., Huynh, T.-D., Dang, D.-K., Hoang, T.-D., Nguyen, M.-Q., Vu, D.-D., Le, C.-H.-D., Phan, N.-B.-L., Bui, Q.-D., Le, N.-H., 2023 PID-LQR Combined Linear Controller for Balancing Ballbot: Simulation and Experiment. Journal of Fuzzy Systems and Control, 1 (3), 97–103.
-
Fischer, T., Karachalios, D.S., Zhavzharov, I., Abbas, H.S., 2024. Closed-loop identification and tracking control of a ballbot. 2024 IEEE Conference on Control Technology and Applications (CCTA), 337–342. IEEE.
-
Fong, J., Uppill, S., Cazzolato, B., 2009. Design and build a ballbot. Report, The University of Adelaide, Australia.
-
Han, H.Y., Han, T.Y., Jo, H.S., 2014. Development of omnidirectional self-balancing robot. 2014 IEEE International Symposium on Robotics and Manufacturing Automation (ROMA), 57–62. IEEE.
-
Hertig, L., Schindler, D., Bloesch, M., Remy, C.D., Siegwart, R., 2013. Unified state estimation for a ballbot. 2013 IEEE International Conference on Robotics and Automation, 2471–2476. IEEE.
Jespersen, T.K., 2019. Kugle – modelling and control of a ball-balancing robot. Master Thesis, Aalborg University.
-
Jespersen, T.K., al Ahdab, M., Juan de Dios, F.M., Damgaard, M.R., Hansen, K.D., Pedersen, R., Bak, T., 2020. Path-following model predictive control of ballbots. 2020 IEEE International Conference on Robotics and Automation (ICRA), 1498–1504. IEEE.
-
Kumagai, M., Ochiai, T., 2008. Development of a robot balancing on a ball. 2008 International Conference on Control, Automation and Systems, 433–438. IEEE.
-
Kumagai, M., Ochiai, T., 2010. Development of a robot balanced on a ball – first report, implementation of the robot and basic control. Journal of Robotics and Mechatronics, 22 (3), 348–355. Fuji Technology Press Ltd.
-
Lauwers, T.B., Kantor, G.A., Hollis, R.L., 2006. A dynamically stable single-wheeled mobile robot with inverse mouse-ball drive. Proceedings 2006 IEEE International Conference on Robotics and Automation (ICRA), 2884–2889. IEEE.
-
Liao, J., Chen, Z., Yao, B., 2018. Model-based coordinated control of four-wheel independently driven skid steer mobile robot with wheel–ground interaction and wheel dynamics. IEEE Transactions on Industrial Informatics, 15 (3), 1742–1752. IEEE.
-
Martínez, S., Cortés, J., Bullo, F., 2003. Motion planning and control problems for underactuated robots. In: Control Problems in Robotics, 59–74. Springer.
-
Mocherlla, E.P., Netto, W., Jesna, S., 2017. Design of LQR controller for Ballbot and hardware implementation. 2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE), 1–6. IEEE.
-
Nagarajan, U., Kantor, G., Hollis, R., 2014. The ballbot: An omnidirectional balancing mobile robot. The International Journal of Robotics Research, 33 (6), 917–930. SAGE Publications.
-
Nguyen, H.G., Morrell, J., Mullens, K.D., Burmeister, A.B., Miles, S., Farrington, N., Thomas, K.M., Gage, D.W., 2004. Segway robotic mobility platform. Mobile Robots XVII, 5609, 207–220. SPIE.
-
Pham, M.D., Vu, D.C., Nguyen, T.T.H., Nguyen, T.V.A., Bang, D.H., Nguyen, T.L., 2024. Adaptive Mechanism Hierarchical Sliding Mode Control for Ballbot Systems. 2024 International Conference on Advanced Technologies for Communications (ATC), 797–802. IEEE.
-
Raikwar, S., Fehrmann, J., Herlitzius, T., 2022. Navigation and control development for a four-wheel-steered mobile orchard robot using model-based design. Computers and Electronics in Agriculture, 202, 107410. Elsevier.
-
Sidi, M.H.A., Hudha, K., Abd Kadir, Z., Amer, N.H., 2018. Modeling and path tracking control of a tracked mobile robot. 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA), 72–76. IEEE.
-
Song, J.B., Byun, K.S., 2004. Design and control of a four-wheeled omnidirectional mobile robot with steerable omnidirectional wheels. Journal of Robotic Systems, 21 (4), 193–208. Wiley Online Library.
-
Studt, M., Zhavzharov, I., Abbas, H.S., 2022. Parameter identification and LQR/MPC balancing control of a ballbot. 2022 European Control Conference (ECC), 1315–1321. IEEE.
-
Tavakoli, M., Viegas, C., 2014. Analysis and application of dual-row omnidirectional wheels for climbing robots. Mechatronics, 24 (5), 436–448. Elsevier.
-
Ugenti, A., Galati, R., Mantriota, G., Reina, G., 2023. Analysis of an all-terrain tracked robot with innovative suspension system. Mechanism and Machine Theory, 182, 105237. Elsevier.
-
Vaidya, B., Shomin, M., Hollis, R., Kantor, G., 2015. Operation of the ballbot on slopes and with center-of-mass offsets. 2015 IEEE International Conference on Robotics and Automation (ICRA), 2383–2388. IEEE.
-
Vu, D.C., Pham, M.D., Nguyen, T.T.H., Nguyen, T.V.A., Nguyen, T.L., 2024. Time-optimal trajectory generation and observer-based hierarchical sliding mode control for ballbots with system constraints. International Journal of Robust and Nonlinear Control, 34 (11), 7580–7610. Wiley Online Library.
DESIGN, MODELING AND EXPERIMENTAL INVESTIGATION OF A BALLBOT
Yıl 2025,
Cilt: 13 Sayı: 4, 1165 - 1177, 30.12.2025
Hazin İnci
,
Hüseyin Deniz Öztürk
,
Erman Selim
,
Enver Tatlıcıoğlu
Öz
In this study, the fundamental structure, dynamics and motion capabilities of the ballbot system were experimentally investigated. Stepper motors were used as actuators, single-row omniwheels as the wheels and an STM32 microcontroller as the main control unit in the system design. The wheels were positioned at an angle of 120° between each other and at a zenith angle of 45°. Euler angle data obtained from an Inertial Measurement Unit (IMU) in the system were processed using an Extended Kalman Filter (EKF) to improve accuracy. Task priorities and execution times of the multitasking running on the STM32 were monitored with an oscilloscope to manage and track performance. The kinematic model of the ballbot was derived and a Proportional Derivative (PD) controller structure was employed for both balance and position tracking. To compensate for tilt error and drive the robot toward the desired direction, the sum of two PD components was applied. Experimental results successfully demonstrated the system’s ability to maintain balance and the effectiveness of the control algorithm. The study validates the practical applicability of theoretical models and the PD control strategy and provides an experimental reference.
Etik Beyan
No conflict of interest was declared by the authors.
Destekleyen Kurum
Scientific and Technological Research Council of Türkiye (TÜBİTAK)
Teşekkür
This study was supported by Scientific and Technological Research Council of Türkiye (TÜBİTAK) under the Grant Number 121E296. The authors thank to TÜBİTAK for their supports.
Kaynakça
-
Alyousify, M.A., Abbas, H.S., Hassan, M.M., Amin, M.H., 2022. Parameter identification and control of a ball balancing robot. 2022 8th International Conference on Mechatronics and Robotics Engineering (ICMRE), 91–97. IEEE.
-
Cu, M.-P., Huynh, T.-D., Dang, D.-K., Hoang, T.-D., Nguyen, M.-Q., Vu, D.-D., Le, C.-H.-D., Phan, N.-B.-L., Bui, Q.-D., Le, N.-H., 2023 PID-LQR Combined Linear Controller for Balancing Ballbot: Simulation and Experiment. Journal of Fuzzy Systems and Control, 1 (3), 97–103.
-
Fischer, T., Karachalios, D.S., Zhavzharov, I., Abbas, H.S., 2024. Closed-loop identification and tracking control of a ballbot. 2024 IEEE Conference on Control Technology and Applications (CCTA), 337–342. IEEE.
-
Fong, J., Uppill, S., Cazzolato, B., 2009. Design and build a ballbot. Report, The University of Adelaide, Australia.
-
Han, H.Y., Han, T.Y., Jo, H.S., 2014. Development of omnidirectional self-balancing robot. 2014 IEEE International Symposium on Robotics and Manufacturing Automation (ROMA), 57–62. IEEE.
-
Hertig, L., Schindler, D., Bloesch, M., Remy, C.D., Siegwart, R., 2013. Unified state estimation for a ballbot. 2013 IEEE International Conference on Robotics and Automation, 2471–2476. IEEE.
Jespersen, T.K., 2019. Kugle – modelling and control of a ball-balancing robot. Master Thesis, Aalborg University.
-
Jespersen, T.K., al Ahdab, M., Juan de Dios, F.M., Damgaard, M.R., Hansen, K.D., Pedersen, R., Bak, T., 2020. Path-following model predictive control of ballbots. 2020 IEEE International Conference on Robotics and Automation (ICRA), 1498–1504. IEEE.
-
Kumagai, M., Ochiai, T., 2008. Development of a robot balancing on a ball. 2008 International Conference on Control, Automation and Systems, 433–438. IEEE.
-
Kumagai, M., Ochiai, T., 2010. Development of a robot balanced on a ball – first report, implementation of the robot and basic control. Journal of Robotics and Mechatronics, 22 (3), 348–355. Fuji Technology Press Ltd.
-
Lauwers, T.B., Kantor, G.A., Hollis, R.L., 2006. A dynamically stable single-wheeled mobile robot with inverse mouse-ball drive. Proceedings 2006 IEEE International Conference on Robotics and Automation (ICRA), 2884–2889. IEEE.
-
Liao, J., Chen, Z., Yao, B., 2018. Model-based coordinated control of four-wheel independently driven skid steer mobile robot with wheel–ground interaction and wheel dynamics. IEEE Transactions on Industrial Informatics, 15 (3), 1742–1752. IEEE.
-
Martínez, S., Cortés, J., Bullo, F., 2003. Motion planning and control problems for underactuated robots. In: Control Problems in Robotics, 59–74. Springer.
-
Mocherlla, E.P., Netto, W., Jesna, S., 2017. Design of LQR controller for Ballbot and hardware implementation. 2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE), 1–6. IEEE.
-
Nagarajan, U., Kantor, G., Hollis, R., 2014. The ballbot: An omnidirectional balancing mobile robot. The International Journal of Robotics Research, 33 (6), 917–930. SAGE Publications.
-
Nguyen, H.G., Morrell, J., Mullens, K.D., Burmeister, A.B., Miles, S., Farrington, N., Thomas, K.M., Gage, D.W., 2004. Segway robotic mobility platform. Mobile Robots XVII, 5609, 207–220. SPIE.
-
Pham, M.D., Vu, D.C., Nguyen, T.T.H., Nguyen, T.V.A., Bang, D.H., Nguyen, T.L., 2024. Adaptive Mechanism Hierarchical Sliding Mode Control for Ballbot Systems. 2024 International Conference on Advanced Technologies for Communications (ATC), 797–802. IEEE.
-
Raikwar, S., Fehrmann, J., Herlitzius, T., 2022. Navigation and control development for a four-wheel-steered mobile orchard robot using model-based design. Computers and Electronics in Agriculture, 202, 107410. Elsevier.
-
Sidi, M.H.A., Hudha, K., Abd Kadir, Z., Amer, N.H., 2018. Modeling and path tracking control of a tracked mobile robot. 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA), 72–76. IEEE.
-
Song, J.B., Byun, K.S., 2004. Design and control of a four-wheeled omnidirectional mobile robot with steerable omnidirectional wheels. Journal of Robotic Systems, 21 (4), 193–208. Wiley Online Library.
-
Studt, M., Zhavzharov, I., Abbas, H.S., 2022. Parameter identification and LQR/MPC balancing control of a ballbot. 2022 European Control Conference (ECC), 1315–1321. IEEE.
-
Tavakoli, M., Viegas, C., 2014. Analysis and application of dual-row omnidirectional wheels for climbing robots. Mechatronics, 24 (5), 436–448. Elsevier.
-
Ugenti, A., Galati, R., Mantriota, G., Reina, G., 2023. Analysis of an all-terrain tracked robot with innovative suspension system. Mechanism and Machine Theory, 182, 105237. Elsevier.
-
Vaidya, B., Shomin, M., Hollis, R., Kantor, G., 2015. Operation of the ballbot on slopes and with center-of-mass offsets. 2015 IEEE International Conference on Robotics and Automation (ICRA), 2383–2388. IEEE.
-
Vu, D.C., Pham, M.D., Nguyen, T.T.H., Nguyen, T.V.A., Nguyen, T.L., 2024. Time-optimal trajectory generation and observer-based hierarchical sliding mode control for ballbots with system constraints. International Journal of Robust and Nonlinear Control, 34 (11), 7580–7610. Wiley Online Library.