Derleme
BibTex RIS Kaynak Göster

ISIL ENERJİ DEPOLAMA SİSTEMLERİ İÇİN ORGANİK FAZ DEĞİŞTİREN MADDELERİN MEVCUT DURUMU ÜZERİNE BİR İNCELEME

Yıl 2018, , 161 - 174, 30.03.2018
https://doi.org/10.21923/jesd.331998

Öz










Gizli
ısıl enerji depolama son yıllarda önemle üzerinde durulan, enerji verimliliğini
artırıcı yöntemlerden biridir. Gizli ısıl enerji depolamada kullanılan yüksek
ısıl kapasiteye sahip ve belirli bir sıcaklık değerinde faz değiştirerek enerji
absorblayan veya salan maddelere Faz
Değiştiren Maddeler (FDMler)
adı verilir. FDMler organik, inorganik ve ötektik
bileşikler olmak üzere üç ana grupta toplanır. Organik FDMler katı-sıvı faz
değişimi gösterirken küçük hacim değişimine uğramaları ve yüksek gizli ısıl
enerji depolama kapasitesine sahip olmalarından dolayı diğer FDMlere göre daha
çok tercih edilmektedir. Kapsülleme çalışmaları organik FDMlerin ısı transfer
alanını artırmak ve faz değişimi sırasındaki hacim değişimini kontrol altında
tutmak amaçlı yapılmaktadır. Ayrıca organik FDMlere nano yapıda malzemelerin
ilave edilmesi ısıl iletkenliğin artırılmasını sağlamaktadır. Bununla birlikte,
ısıl davranışların incelenmesi için yapılan modelleme çalışmaları ile organik
FDMlerin kullanımı giderek yaygınlaşmaktadır. Bu çalışmada, son 20 yılda
organik FDMlerin kapsüllenmesi, ısıl iletkenliğinin artırılması ve ısıl
davranışının modellenmesi konusunda yapılan araştırmaların sonuçları
sunulmuştur.
    

Kaynakça

  • Abhat, A., 1983. Low temperature latent heat thermal energy storage: heat storage materials. Solar Energy, 30, p. 313–332.
  • Adine, H. A., Qarnia, H. E., 2009. Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials. Applied Mathematical Modelling, 33(4), 2132-2144.
  • Ahmad, M., Bontemps, A., Sallée, H., Quenard, D., 2006. Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material. Energy and Buildings, 38(6), 673-681.
  • Alay, S., Alkan, C., Göde, F., 2011. Synthesis and characterization of poly(methyl methacrylate)/n-hexadecane microcapsules using different cross-linkers and their application to some fabrics. Thermochimica Acta, 518(1-2), 1-8.
  • Alkan, C., Sarı, A., Karaipekli, A., 2011. Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage. Energy Conversion and Management, 52(1), 687-692.
  • Alkan, C., Sarı, A., Karaipekli, A., Uzun, O., 2009. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 93(1), 143-147.
  • Baetens, R., Jelle, B.P., Gustavsen, A., 2010. Phase change materials for building applications: A state-of-the-art review. Energy and Buildings 42, 1361–1368.
  • Borreguero, A., Valverde, J., Rodríguez, J., Barber, A., Cubillo, J., Carmona, M., 2011. Synthesis and characterization of microcapsules containing Rubitherm®RT27 obtained by spray drying. Chemical Engineering Journal, 166(1), 384-390.
  • Cabeza, L., Castell, A., Barreneche, C., Gracia, A. D., Fernández, A., 2011. Materials used as PCM in thermal energy storage in buildings: A review. Renewable and Sustainable Energy Reviews, 15(3), 1675-1695.
  • Cao, L., Tang, F., Fang, G., 2014. Synthesis and characterization of microencapsulated paraffin with titanium dioxide shell as shape-stabilized thermal energy storage materials in buildings. Energy and Buildings, 72, 31-37.
  • Chen, Z., Yu, F., Zeng, X., Zhang, Z., 2012. Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier. Applied Energy, 91(1), 7-12.
  • Deveci, S. S., Basal, G., 2009. Preparation of PCM microcapsules by complex coacervation of silk fibroin and chitosan. Colloid and Polymer Science, 287(12), 1455-1467.
  • Fan, L., Fang, X., Wang, X., Zeng, Y., Xiao, Y., Yu, Z., Xu, X., Hu, Y., Cen, K., 2013. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Applied Energy, 110, 163-172.
  • Farid MM, Khudhair AM, Razack SAK., 2004. A review on phase change energy storage: materials and applications. Energy Convers Managament 45:1597–615.
  • Fleischer, A. S., 2015. Thermal Energy Storage Using Phase Change Materials Fundamentals and Applications. Cham: Springer International Publishing.
  • Hadorn J.C., 2005. Thermal energy storage for solar and low energy buildings – State of the art by the IEA Solar Heating and Cooling Task 32. Spain: Servei de Publicacions, Universitat de Lleida.
  • Hawlader, M., Uddin, M., Khin, M. M., 2003. Microencapsulated PCM thermal-energy storage system. Applied Energy, 74(1-2), 195-202.
  • Ho, C., Gao, J., 2009. Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material. International Communications in Heat and Mass Transfer, 36(5), 467-470.
  • Jacob, R., Bruno, F., 2015. Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage. Renewable and Sustainable Energy Reviews, 48, 79-87.
  • Jamekhorshid, A., Sadrameli, S., Farid, M., 2014. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renewable and Sustainable Energy Reviews, 31, 531-542.
  • Jiang, X., Luo, R., Peng, F., Fang, Y., Akiyama, T., Wang, S., 2015. Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3. Applied Energy, 137, 731-737.
  • Karaipekli, A., Sarı, A., Kaygusuz, K., 2007. Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications. Renewable Energy, 32(13), 2201-2210.
  • Khadiran, T., Hussein, M. Z., Zainal, Z., Rusli, R., 2015. Encapsulation techniques for organic phase change materials as thermal energy storage medium: A review. Solar Energy Materials and Solar Cells, 143, 78-98.
  • Khudhair AM, Farid MM, Zalba B., 2004. A review on energy conservation in buildingapplications with thermal storage by latent heat using phase change materials. Energy Convers Management; 45:263–75.
  • Konuklu, Y., Ostry, M., Paksoy, H. O., Charvat, P., 2015. Review on using microencapsulated phase change materials (PCM) in building applications. Energy and Buildings, 106, 134-155.
  • Konuklu, Y., Unal, M., Paksoy, H. O., 2014. Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 120, 536-542.
  • Kuznik, F., Virgone, J., Noel, J., 2008. Optimization of a phase change material wallboard for building use. Applied Thermal Engineering, 28(11-12), 1291-1298.
  • Kylili, A., Fokaides, P. A., 2016. Life Cycle Assessment (LCA) of Phase Change Materials (PCMs) for building applications: A review. Journal of Building Engineering, 6, 133-143.
  • Lamberg, P., Sirén, K., 2003. Analytical model for melting in a semi-infinite PCM storage with an internal fin. Heat and Mass Transfer, 39(2), 167-176.
  • Lashgari, S., Arabi, H., Mahdavian, A. R., Ambrogi, V., 2017. Thermal and morphological studies on novel PCM microcapsules containing n-hexadecane as the core in a flexible shell. Applied Energy, 190, 612-622.
  • Li, M. G., Zhang, Y., Xu, Y. H., Zhang, D., 2011. Effect of different amounts of surfactant on characteristics of nanoencapsulated phase-change materials. Polymer Bulletin, 67(3), 541-552.
  • Li, W., Song, G., Tang, G., Chu, X., Ma, S., Liu, C., 2011. Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell. Energy, 36(2), 785-791.
  • Li, W., Zhang, X., Wang, X., Tang, G., Shi, H., 2012. Fabrication and morphological characterization of microencapsulated phase change materials (MicroPCMs) and macrocapsules containing MicroPCMs for thermal energy storage. Energy, 38(1), 249-254.
  • Liang, C., Lingling, X., Hongbo, S., Zhibin, Z., 2009. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system. Energy Conversion and Management, 50(3), 723-729.
  • Liu, L., Alva, G., Huang, X., Fang, G., 2016. Preparation, heat transfer and flow properties of microencapsulated phase change materials for thermal energy storage. Renewable and Sustainable Energy Reviews, 66, 399-414.
  • Liu, L., Alva, G., Jia, Y., Huang, X., & Fang, G., 2017. Dynamic thermal characteristics analysis of microencapsulated phase change suspensions flowing through rectangular mini-channels for thermal energy storage. Energy and Buildings, 134, 37-51.
  • Ma, S., Song, G., Li, W., Fan, P., Tang, G., 2010. UV irradiation-initiated MMA polymerization to prepare microcapsules containing phase change paraffin. Solar Energy Materials and Solar Cells, 94(10),1643-1647.
  • Ma, Y., Chu, X., Tang, G., Yao, Y., 2013. The effect of different soft segments on the formation and properties of binary core microencapsulated phase change materials with polyurea/polyurethane double shell. Journal of Colloid and Interface Science, 392, 407-414.
  • Mehling H, Cabeza LF., 2008. Heat and cold storage with PCM: An up to date introduction into basics and applications. NewYork: Springer.
  • Memon, S. A., 2014. Phase change materials integrated in building walls: A state of the art review. Renewable and Sustainable Energy Reviews, 31, 870-906.
  • Mohamed, S. A., Al-Sulaiman, F. A., Ibrahim, N. I., Zahir, M. H., Al-Ahmed, A., Saidur, R., Yılbaş, B.S., Sahin, A., 2017. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renewable and Sustainable Energy Reviews, 70, 1072-1089.
  • Neeper, D., 2000. Thermal dynamics of wallboard with latent heat storage. Solar Energy, 68(5), 393-403.
  • Onder, E., Sarier, N., Cimen, E., 2008. Encapsulation of phase change materials by complex coacervation to improve thermal performances of woven fabrics. Thermochimica Acta, 467(1-2), 63-72.
  • Özonur, Y., Mazman, M., Paksoy, H. Ö, Evliya, H., 2006. Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material. International Journal of Energy Research, 30(10), 741-749.
  • Pillai, K., Brinkworth, B., 1976. The storage of low grade thermal energy using phase change materials. Applied Energy, 2(3), 205-216.
  • Qiu, X., Lu, L., Wang, J., Tang, G., Song, G., 2014. Preparation and characterization of microencapsulated n-octadecane as phase change material with different n-butyl methacrylate-based copolymer shells. Solar Energy Materials and Solar Cells, 128, 102-111.
  • Şahan, N., Fois, M., Paksoy, H., 2015. Improving thermal conductivity phase change materials A study of paraffin nanomagnetite composites. Solar Energy Materials and Solar Cells, 137, 61-67.
  • Salaün, F., Bedek, G., Devaux, E., Dupont, D., Gengembre, L., 2011. Microencapsulation of a cooling agent by interfacial polymerization: Influence of the parameters of encapsulation on poly(urethane–urea) microparticles characteristics. Journal of Membrane Science, 370(1-2), 23-33.
  • Sánchez, L., Sánchez, P., Carmona, M., Lucas, A. D., Rodríguez, J. F., 2008. Influence of operation conditions on the microencapsulation of PCMs by means of suspension-like polymerization. Colloid and Polymer Science, 286(8-9), 1019-1027.
  • Sánchez, L., Sánchez, P., de Lucas, A., Carmona, M., Rodríguez, J. F., 2007. Microencapsulation of PCMs with a polystyrene shell. Colloid Polym Sci, 285: 1377–85.
  • Sánchez-Silva, L., Rodríguez, J. F., Romero, A., Borreguero, A. M., Carmona, M., Sánchez, P., 2010. Microencapsulation of PCMs with a styrene-methyl methacrylate copolymer shell by suspension-like polymerisation. Chemical Engineering Journal, 157(1), 216-222.
  • Sarı, A., 2004. Form-stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: preparation and thermal properties. Energy Conversion and Management, 45(13-14), 2033-2042.
  • Sarı, A., Alkan, C., Karaipekli, A., 2010. Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid–liquid microPCM for thermal energy storage. Applied Energy, 87(5),1529-1534.
  • Sarı, A., Alkan, C., Karaipekli, A., Önal, A., 2008. Preparation, characterization and thermal properties of styrene maleic anhydride copolymer (SMA)/fatty acid composites as form stable phase change materials. Energy Conversion and Management, 49(2), 373-380.
  • Sharma A, Tyagi VV, Chen CR, Buddhi D., 2009. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev;13:318–45.
  • Sharma, R., Ganesan, P., Tyagi, V., Metselaar, H., Sandaran, S., 2015. Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Conversion and Management,95, 193-228.
  • Shi, J., Wu, X., Fu, X., Sun, R., 2015. Synthesis and thermal properties of a novel nanoencapsulated phase change material with PMMA and SiO2 as hybrid shell materials. Thermochimica Acta, 617, 90-94.
  • Su JF, HuangZ, Ren L., 2007. High compact melamine-formaldehyde micro PCMs containing n-octadecane fabricated by a two-step coacervation method. Colloid Polym Sci, 285:1581–91.
  • Su, D., Jia, Y., Alva, G., Tang, F., Fang, G. (2016). Preparation and thermal properties of n–octadecane/stearic acid eutectic mixtures with hexagonal boron nitride as phase change materials for thermal energy storage. Energy and Buildings, 131, 35–41.
  • Su, J., Wang, L., Ren, L., 2007. Synthesis of polyurethane microPCMs containing n-octadecane by interfacial polycondensation: Influence of styrene-maleic anhydride as a surfactant. Colloids and Surfaces, 299(1-3), 268-275.
  • Su, W., Darkwa, J., Kokogiannakis, G., 2015. Review of solid–liquid phase change materials and their encapsulation technologies. Renewable and Sustainable Energy Reviews, 48, 373-391.
  • Toygun, Ş., Köneçoğlu, G., Kalpaklı, Y., 2013. Sol- Jel Yöntemi Genel Prensipleri. Mühendislik ve Fen Bilimleri Dergisi , Sigma (31), 456-476.
  • Trp, A., 2005. An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit. Solar Energy, 79(6), 648-660.
  • Tumirah, K., Hussein, M., Zulkarnain, Z., Rafeadah, R., 2014. Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage. Energy, 66, 881-890.
  • Verma, P., V., Singal, S. 2008. Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material. Renewable and Sustainable Energy Reviews, 12(4), 999-1031.
  • Wang, X., Lu, E., Lin, W., Wang, C., 2000. Micromechanism of heat storage in a binary system of two kinds of polyalcohols as a solid–solid phase change material. Energy Conversion and Management, 41(2), 135-144.
  • Xia, L., Zhang, P., Wang, R., 2010. Preparation and thermal characterization of expanded graphite/paraffin composite phase change material. Carbon, 48(9), 2538-2548.
  • You, M., Wang, X., Zhang, X., Zhang, L., Wang, J., 2011. Microencapsulated n-Octadecane with styrene-divinybenzene co-polymer shells. J Polym Res, 18:49–58.
  • You, M., Zhang, X., Wang, J., Wang, X., 2009. Polyurethane foam containing micro encapsulated phase-change materials with styrene–divinybenzene copolymer shells. J Mater Sci, 44:3141–7.
  • Zalba, B., Marı́n, J. M., Cabeza, L. F., Mehling, H. 2003. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering, 23(3), 251-283.
  • Zeng, J. L., Sun, L. X., Xu, F., Tan, Z. C., Zhang, Z. H., Zhang, J., Zhang, T., 2007. Study of a PCM based energy storage system containing Ag nanoparticles. Journal of Thermal Analysis and Calorimetry, 87(2), 369-373.
  • Zhang, X., Wang, X., Wu, D., 2016. Design and synthesis of multifunctional microencapsulated phase change materials with silver/silica double-layered shell for thermal energy storage, electrical conduction and antimicrobial effectiveness. Energy, 111, 498-512.
  • Zhao, C., Zhang, G., 2011. Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications. Renewable and Sustainable Energy Reviews, 15(8), 3813-3832.

A REVIEW ON CURRENT STATUS OF ORGANIC PHASE CHANGE MATERIALS FOR THERMAL ENERGY STORAGE SYSTEMS

Yıl 2018, , 161 - 174, 30.03.2018
https://doi.org/10.21923/jesd.331998

Öz

Latent heat energy storage is one of the energy
efficiency enhancing methods that has been emphasized in recent years.
Materials used for latent heat storage having high storage capacity and
absorbing and emitting heat by changing phase at a certain temperature are called
phase change materials (PCMs). PCMs classify in three main groups: organic,
inorganic, and eutectic. Organic phase change materials are mostly preferred
than the other phase change materials due to the fact that they possess small-volume
changes during the solid-liquid phase change process and higher latent heat of
fusion. Encapsulation studies are carried out to increase the heat-transfer
area for organic PCMs and to preserve volume change during phase change.
Furthermore, the addition of the nano-structured materials into the organic
phase change materials provides that the thermal conductivity be increased. At
the same time, the use of organic phase change materials is becoming
increasingly widespread with modeling studies on the thermal behavior analysis.










In this study, a review of
researches on encapsulation of organic phase change materials, thermal
conductivity enhancement and modeling of thermal behavior reported in the last
20 years has presented.
    

Kaynakça

  • Abhat, A., 1983. Low temperature latent heat thermal energy storage: heat storage materials. Solar Energy, 30, p. 313–332.
  • Adine, H. A., Qarnia, H. E., 2009. Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials. Applied Mathematical Modelling, 33(4), 2132-2144.
  • Ahmad, M., Bontemps, A., Sallée, H., Quenard, D., 2006. Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material. Energy and Buildings, 38(6), 673-681.
  • Alay, S., Alkan, C., Göde, F., 2011. Synthesis and characterization of poly(methyl methacrylate)/n-hexadecane microcapsules using different cross-linkers and their application to some fabrics. Thermochimica Acta, 518(1-2), 1-8.
  • Alkan, C., Sarı, A., Karaipekli, A., 2011. Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage. Energy Conversion and Management, 52(1), 687-692.
  • Alkan, C., Sarı, A., Karaipekli, A., Uzun, O., 2009. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 93(1), 143-147.
  • Baetens, R., Jelle, B.P., Gustavsen, A., 2010. Phase change materials for building applications: A state-of-the-art review. Energy and Buildings 42, 1361–1368.
  • Borreguero, A., Valverde, J., Rodríguez, J., Barber, A., Cubillo, J., Carmona, M., 2011. Synthesis and characterization of microcapsules containing Rubitherm®RT27 obtained by spray drying. Chemical Engineering Journal, 166(1), 384-390.
  • Cabeza, L., Castell, A., Barreneche, C., Gracia, A. D., Fernández, A., 2011. Materials used as PCM in thermal energy storage in buildings: A review. Renewable and Sustainable Energy Reviews, 15(3), 1675-1695.
  • Cao, L., Tang, F., Fang, G., 2014. Synthesis and characterization of microencapsulated paraffin with titanium dioxide shell as shape-stabilized thermal energy storage materials in buildings. Energy and Buildings, 72, 31-37.
  • Chen, Z., Yu, F., Zeng, X., Zhang, Z., 2012. Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier. Applied Energy, 91(1), 7-12.
  • Deveci, S. S., Basal, G., 2009. Preparation of PCM microcapsules by complex coacervation of silk fibroin and chitosan. Colloid and Polymer Science, 287(12), 1455-1467.
  • Fan, L., Fang, X., Wang, X., Zeng, Y., Xiao, Y., Yu, Z., Xu, X., Hu, Y., Cen, K., 2013. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Applied Energy, 110, 163-172.
  • Farid MM, Khudhair AM, Razack SAK., 2004. A review on phase change energy storage: materials and applications. Energy Convers Managament 45:1597–615.
  • Fleischer, A. S., 2015. Thermal Energy Storage Using Phase Change Materials Fundamentals and Applications. Cham: Springer International Publishing.
  • Hadorn J.C., 2005. Thermal energy storage for solar and low energy buildings – State of the art by the IEA Solar Heating and Cooling Task 32. Spain: Servei de Publicacions, Universitat de Lleida.
  • Hawlader, M., Uddin, M., Khin, M. M., 2003. Microencapsulated PCM thermal-energy storage system. Applied Energy, 74(1-2), 195-202.
  • Ho, C., Gao, J., 2009. Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material. International Communications in Heat and Mass Transfer, 36(5), 467-470.
  • Jacob, R., Bruno, F., 2015. Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage. Renewable and Sustainable Energy Reviews, 48, 79-87.
  • Jamekhorshid, A., Sadrameli, S., Farid, M., 2014. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renewable and Sustainable Energy Reviews, 31, 531-542.
  • Jiang, X., Luo, R., Peng, F., Fang, Y., Akiyama, T., Wang, S., 2015. Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3. Applied Energy, 137, 731-737.
  • Karaipekli, A., Sarı, A., Kaygusuz, K., 2007. Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications. Renewable Energy, 32(13), 2201-2210.
  • Khadiran, T., Hussein, M. Z., Zainal, Z., Rusli, R., 2015. Encapsulation techniques for organic phase change materials as thermal energy storage medium: A review. Solar Energy Materials and Solar Cells, 143, 78-98.
  • Khudhair AM, Farid MM, Zalba B., 2004. A review on energy conservation in buildingapplications with thermal storage by latent heat using phase change materials. Energy Convers Management; 45:263–75.
  • Konuklu, Y., Ostry, M., Paksoy, H. O., Charvat, P., 2015. Review on using microencapsulated phase change materials (PCM) in building applications. Energy and Buildings, 106, 134-155.
  • Konuklu, Y., Unal, M., Paksoy, H. O., 2014. Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 120, 536-542.
  • Kuznik, F., Virgone, J., Noel, J., 2008. Optimization of a phase change material wallboard for building use. Applied Thermal Engineering, 28(11-12), 1291-1298.
  • Kylili, A., Fokaides, P. A., 2016. Life Cycle Assessment (LCA) of Phase Change Materials (PCMs) for building applications: A review. Journal of Building Engineering, 6, 133-143.
  • Lamberg, P., Sirén, K., 2003. Analytical model for melting in a semi-infinite PCM storage with an internal fin. Heat and Mass Transfer, 39(2), 167-176.
  • Lashgari, S., Arabi, H., Mahdavian, A. R., Ambrogi, V., 2017. Thermal and morphological studies on novel PCM microcapsules containing n-hexadecane as the core in a flexible shell. Applied Energy, 190, 612-622.
  • Li, M. G., Zhang, Y., Xu, Y. H., Zhang, D., 2011. Effect of different amounts of surfactant on characteristics of nanoencapsulated phase-change materials. Polymer Bulletin, 67(3), 541-552.
  • Li, W., Song, G., Tang, G., Chu, X., Ma, S., Liu, C., 2011. Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell. Energy, 36(2), 785-791.
  • Li, W., Zhang, X., Wang, X., Tang, G., Shi, H., 2012. Fabrication and morphological characterization of microencapsulated phase change materials (MicroPCMs) and macrocapsules containing MicroPCMs for thermal energy storage. Energy, 38(1), 249-254.
  • Liang, C., Lingling, X., Hongbo, S., Zhibin, Z., 2009. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system. Energy Conversion and Management, 50(3), 723-729.
  • Liu, L., Alva, G., Huang, X., Fang, G., 2016. Preparation, heat transfer and flow properties of microencapsulated phase change materials for thermal energy storage. Renewable and Sustainable Energy Reviews, 66, 399-414.
  • Liu, L., Alva, G., Jia, Y., Huang, X., & Fang, G., 2017. Dynamic thermal characteristics analysis of microencapsulated phase change suspensions flowing through rectangular mini-channels for thermal energy storage. Energy and Buildings, 134, 37-51.
  • Ma, S., Song, G., Li, W., Fan, P., Tang, G., 2010. UV irradiation-initiated MMA polymerization to prepare microcapsules containing phase change paraffin. Solar Energy Materials and Solar Cells, 94(10),1643-1647.
  • Ma, Y., Chu, X., Tang, G., Yao, Y., 2013. The effect of different soft segments on the formation and properties of binary core microencapsulated phase change materials with polyurea/polyurethane double shell. Journal of Colloid and Interface Science, 392, 407-414.
  • Mehling H, Cabeza LF., 2008. Heat and cold storage with PCM: An up to date introduction into basics and applications. NewYork: Springer.
  • Memon, S. A., 2014. Phase change materials integrated in building walls: A state of the art review. Renewable and Sustainable Energy Reviews, 31, 870-906.
  • Mohamed, S. A., Al-Sulaiman, F. A., Ibrahim, N. I., Zahir, M. H., Al-Ahmed, A., Saidur, R., Yılbaş, B.S., Sahin, A., 2017. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renewable and Sustainable Energy Reviews, 70, 1072-1089.
  • Neeper, D., 2000. Thermal dynamics of wallboard with latent heat storage. Solar Energy, 68(5), 393-403.
  • Onder, E., Sarier, N., Cimen, E., 2008. Encapsulation of phase change materials by complex coacervation to improve thermal performances of woven fabrics. Thermochimica Acta, 467(1-2), 63-72.
  • Özonur, Y., Mazman, M., Paksoy, H. Ö, Evliya, H., 2006. Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material. International Journal of Energy Research, 30(10), 741-749.
  • Pillai, K., Brinkworth, B., 1976. The storage of low grade thermal energy using phase change materials. Applied Energy, 2(3), 205-216.
  • Qiu, X., Lu, L., Wang, J., Tang, G., Song, G., 2014. Preparation and characterization of microencapsulated n-octadecane as phase change material with different n-butyl methacrylate-based copolymer shells. Solar Energy Materials and Solar Cells, 128, 102-111.
  • Şahan, N., Fois, M., Paksoy, H., 2015. Improving thermal conductivity phase change materials A study of paraffin nanomagnetite composites. Solar Energy Materials and Solar Cells, 137, 61-67.
  • Salaün, F., Bedek, G., Devaux, E., Dupont, D., Gengembre, L., 2011. Microencapsulation of a cooling agent by interfacial polymerization: Influence of the parameters of encapsulation on poly(urethane–urea) microparticles characteristics. Journal of Membrane Science, 370(1-2), 23-33.
  • Sánchez, L., Sánchez, P., Carmona, M., Lucas, A. D., Rodríguez, J. F., 2008. Influence of operation conditions on the microencapsulation of PCMs by means of suspension-like polymerization. Colloid and Polymer Science, 286(8-9), 1019-1027.
  • Sánchez, L., Sánchez, P., de Lucas, A., Carmona, M., Rodríguez, J. F., 2007. Microencapsulation of PCMs with a polystyrene shell. Colloid Polym Sci, 285: 1377–85.
  • Sánchez-Silva, L., Rodríguez, J. F., Romero, A., Borreguero, A. M., Carmona, M., Sánchez, P., 2010. Microencapsulation of PCMs with a styrene-methyl methacrylate copolymer shell by suspension-like polymerisation. Chemical Engineering Journal, 157(1), 216-222.
  • Sarı, A., 2004. Form-stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: preparation and thermal properties. Energy Conversion and Management, 45(13-14), 2033-2042.
  • Sarı, A., Alkan, C., Karaipekli, A., 2010. Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid–liquid microPCM for thermal energy storage. Applied Energy, 87(5),1529-1534.
  • Sarı, A., Alkan, C., Karaipekli, A., Önal, A., 2008. Preparation, characterization and thermal properties of styrene maleic anhydride copolymer (SMA)/fatty acid composites as form stable phase change materials. Energy Conversion and Management, 49(2), 373-380.
  • Sharma A, Tyagi VV, Chen CR, Buddhi D., 2009. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev;13:318–45.
  • Sharma, R., Ganesan, P., Tyagi, V., Metselaar, H., Sandaran, S., 2015. Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Conversion and Management,95, 193-228.
  • Shi, J., Wu, X., Fu, X., Sun, R., 2015. Synthesis and thermal properties of a novel nanoencapsulated phase change material with PMMA and SiO2 as hybrid shell materials. Thermochimica Acta, 617, 90-94.
  • Su JF, HuangZ, Ren L., 2007. High compact melamine-formaldehyde micro PCMs containing n-octadecane fabricated by a two-step coacervation method. Colloid Polym Sci, 285:1581–91.
  • Su, D., Jia, Y., Alva, G., Tang, F., Fang, G. (2016). Preparation and thermal properties of n–octadecane/stearic acid eutectic mixtures with hexagonal boron nitride as phase change materials for thermal energy storage. Energy and Buildings, 131, 35–41.
  • Su, J., Wang, L., Ren, L., 2007. Synthesis of polyurethane microPCMs containing n-octadecane by interfacial polycondensation: Influence of styrene-maleic anhydride as a surfactant. Colloids and Surfaces, 299(1-3), 268-275.
  • Su, W., Darkwa, J., Kokogiannakis, G., 2015. Review of solid–liquid phase change materials and their encapsulation technologies. Renewable and Sustainable Energy Reviews, 48, 373-391.
  • Toygun, Ş., Köneçoğlu, G., Kalpaklı, Y., 2013. Sol- Jel Yöntemi Genel Prensipleri. Mühendislik ve Fen Bilimleri Dergisi , Sigma (31), 456-476.
  • Trp, A., 2005. An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit. Solar Energy, 79(6), 648-660.
  • Tumirah, K., Hussein, M., Zulkarnain, Z., Rafeadah, R., 2014. Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage. Energy, 66, 881-890.
  • Verma, P., V., Singal, S. 2008. Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material. Renewable and Sustainable Energy Reviews, 12(4), 999-1031.
  • Wang, X., Lu, E., Lin, W., Wang, C., 2000. Micromechanism of heat storage in a binary system of two kinds of polyalcohols as a solid–solid phase change material. Energy Conversion and Management, 41(2), 135-144.
  • Xia, L., Zhang, P., Wang, R., 2010. Preparation and thermal characterization of expanded graphite/paraffin composite phase change material. Carbon, 48(9), 2538-2548.
  • You, M., Wang, X., Zhang, X., Zhang, L., Wang, J., 2011. Microencapsulated n-Octadecane with styrene-divinybenzene co-polymer shells. J Polym Res, 18:49–58.
  • You, M., Zhang, X., Wang, J., Wang, X., 2009. Polyurethane foam containing micro encapsulated phase-change materials with styrene–divinybenzene copolymer shells. J Mater Sci, 44:3141–7.
  • Zalba, B., Marı́n, J. M., Cabeza, L. F., Mehling, H. 2003. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering, 23(3), 251-283.
  • Zeng, J. L., Sun, L. X., Xu, F., Tan, Z. C., Zhang, Z. H., Zhang, J., Zhang, T., 2007. Study of a PCM based energy storage system containing Ag nanoparticles. Journal of Thermal Analysis and Calorimetry, 87(2), 369-373.
  • Zhang, X., Wang, X., Wu, D., 2016. Design and synthesis of multifunctional microencapsulated phase change materials with silver/silica double-layered shell for thermal energy storage, electrical conduction and antimicrobial effectiveness. Energy, 111, 498-512.
  • Zhao, C., Zhang, G., 2011. Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications. Renewable and Sustainable Energy Reviews, 15(8), 3813-3832.
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derleme Makaleler \ Review Articles
Yazarlar

Mehmet Selçuk Mert 0000-0002-8646-0133

Merve Sert 0000-0002-2207-812X

Hatice Hande Mert 0000-0003-0743-1981

Yayımlanma Tarihi 30 Mart 2018
Gönderilme Tarihi 2 Ağustos 2017
Kabul Tarihi 6 Mart 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Mert, M. S., Sert, M., & Mert, H. H. (2018). ISIL ENERJİ DEPOLAMA SİSTEMLERİ İÇİN ORGANİK FAZ DEĞİŞTİREN MADDELERİN MEVCUT DURUMU ÜZERİNE BİR İNCELEME. Mühendislik Bilimleri Ve Tasarım Dergisi, 6(1), 161-174. https://doi.org/10.21923/jesd.331998

Cited By