Araştırma Makalesi
BibTex RIS Kaynak Göster

HAM PETROL KALINTISI İLE ÜRETİLEN BİTÜMLERİN SUYA KARŞI DUYARLILIKLARININ BELİRLENMESİ

Yıl 2018, , 691 - 700, 11.12.2018
https://doi.org/10.21923/jesd.413157

Öz

Trafik hacmindeki ve dingil yüklerindeki artışlar ile toplumların güvenli
yolculuk kalitesi talebi asfalt kaplamaların daha dayanımlı olarak inşa
edilmesini zorunlu hale getirmektedir. Asfalt kaplamaların hizmet ömrü boyunca
sağlayabileceği konfor ve dayanım parametreleri, büyük ölçüde karışımlarda
kullanılan bitümlü bağlayıcının özelliklerine bağlıdır. Kaplamalarda meydana
gelen en önemli deformasyon türlerinden biri de sudan kaynaklanan
bozulmalardır. Bitümlü kaplamalarda sudan kaynaklanan bozulmaların seviyesi;
kullanılan agreganın çeşidine, bitümlü bağlayıcının özeliklerine, karışım
tasarımına, trafik, çevresel etkenler ile bitümlü bağlayıcıya eklenen katkılara
bağlıdır. Çalışmanın amacı, ülkemizde üretilen iki farklı rafinerinden alınan
bitüm örneklerine farklı içeriklerde ham petrol kalıntısı eklenerek hazırlanmış
karışımların soyulma potansiyeli ve neme karşı duyarlılık özelliklerinin
saptanmasıdır. Hazırlanan örneklerin bu özellikleri, Nicholson Soyulma Deneyi
(ASTM D 1664), mineral malzeme ile bitümün adezyon yeteneğini belirleme (GOST
11508-74) deneylerinden edinilen sonuçlar ve Leica S 8 AP0 Stereo Mikroskobu
kullanılarak çekilen görüntüler ile yorumlanmıştır. Deneysel çalışma
sonuçlarına göre, kaynağı farklı bitümlere, farklı oranlarda ham petrol
kalıntısı ilavesinin asfalt karışımlar üzerinde suya bağlı bozulmaları
azalttıkları ve kaplamanın neme karşı direncini arttırdıkları gözlemlenmiştir.

Kaynakça

  • ASTM 1664, 2008. Standard Method of Test for Coating and Stripping of Bitumen Aggregate Mixtures. Conshohocken, PA: American Society for Testing and Materials.
  • ASTM C1252, 1998. Standard test method for uncompacted void content of fine aggregate (as influenced by particle shape, surface texture, and grading). Conshohocken, PA: American Society for Testing and Materials.
  • ASTM C127, 2012. Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate. Conshohocken, PA: American Society for Testing and Materials.
  • ASTM C128, 2012. Standard test method for density, relative density (specific gravity), and absorption of fine aggregate. Conshohocken, PA: American Society for Testing and Materials.
  • ASTM C131, 2006. Standard test method for resistance to degradation of small size coarse aggregate by abrasion and impact in the Los Angeles machine. Conshohocken, PA: American Society for Testing and Materials.
  • ASTM C136, 2008. Standard method for sieve analysis of fine and coarse aggregates. Conshohocken, PA: American Society for Testing and Materials.
  • ASTM C88, 2005. Standard test method for soundness of aggregates by use of sodium sulfate or magnesium sulfate. Conshohocken, PA: American Society for Testing and Materials.
  • ASTM D113-86, 1994. Standard test method for ductility of bituminous materials. Conshohocken, PA: American Society for Testing and Materials.
  • ASTM D2872-12, 2012. Standard test method for effect of heat and air on a moving film of asphalt (Rolling Thin-Film Oven Test). Conshohocken, PA: American Society for Testing and Materials.
  • ASTM D36-06, 2006. Test method for softening point of bitumen (ring-and-ball apparatus). Conshohocken, PA: American Society for Testing and Materials.
  • ASTM D4402-06, 2002. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. Conshohocken, PA: American Society for Testing and Materials.
  • ASTM D4419-90, 2015. Standard test method for measurement of transition temperatures of petroleum waxes by differential scanning calorimetry (DSC). Conshohocken, PA: American Society for Testing and Materials.
  • ASTM D4791, 2010. Standard test method for flat particles, elongated particles, or flat and elongated particles in coarse aggregate. Conshohocken, PA: American Society for Testing and Materials.
  • ASTM D5-06, 2006. Standard test method for penetration of bituminous materials. Conshohocken, PA: American Society for Testing and Materials.
  • Azinfar, B., Zirrahi, M., Hassanzadeh, H., Abedi, J., 2015. A method for characterization of bitumen. Fuel, 153, 240-248.
  • Chaturabong, P., Bahia, H.U., 2017. The evaluation of relative effect of moisture in Hamburg wheel tracking test. Construction and Building Materials, 153, 337-345.
  • European Standard EN 12593, 2007. Bitumen and bituminous binders - Determination of the Fraass breaking point. Brussel: European Committee for Standardization.
  • Fischer, H., Poulikakos L. D., Planche, J. P., Das, P., Grenfell, J., 2013. Challenges while performing AFM on bitumen. Proceedings of the International RILEM Symposium, Stockholm, Sweden.
  • Gedeon, E., Nicolas, C., Achard, C., Rogalski, M., 2005. Characterization of aggregation processes in crude oils using differential scanning calorimetry. Energy & Fuels, 19, 1297-1302.
  • Gorkem, Ç., Şengöz, B., 2009. Predicting stripping and moisture induced damage of asphalt concrete prepared with polymer modified bitumen and hydrated lime. Construction and Building Materials, 23, 2227-2236.
  • GOST 11508-74, 1980. Petroleum bitumens. Methods for determination of bitumen adhesion to marble and sand. Government Committee for Metrology and Standardization.
  • Hamedi, H., Tahami, S.A., 2018. The effect of using anti-stripping additives on moisture damage of hot mix asphalt. International Journal of Adhesion and Adhesives, 81, 90-97.
  • Kumar, S., Srivastava, M., 2017. Meliorate optical textures and mesophase contents by promising approach of deasphalting of petroleum residues. Journal of Industrial and Engineering Chemistry, 48, 133-141.
  • Mansour, F., Vahid, V., 2016. Effect of Liquid Nano material and hydrated lime in improving the moisture behaviour of HMA. Transportation Research Procedia ,17, 506 -512.
  • Rudyk, S., 2018. Relationships between SARA fractions of conventional oil, heavy oil, natural bitumen and residues. Fuel, 216, 330-340.
  • Simanzhenkov, V., Idem, R., 2003. Crude oil chemistry (6. Baskı). New York: Marcel Dekker.
  • Speight, J.G., 1991. The chemistry and technology of petroleum (1.Baskı). New York: Marcel Dekker.
  • Varanda, C., Portugal, I., Ribeiro, J., Silva, A.M.S., Silva, C.M., 2017. Optimization of bitumen formulations using mixture design of experiments (MDOE). Construction and Building Materials, 156, 611-620
  • Whiteoak, D., Read J.M., 2003. The shell bitumen handbook (5. Baskı). London: Thomas Telford Services Ltd.

EVALUATION OF MOISTURE SUSCEPTIBILITY CHARACTERISTICS OF BITUMENS INVOLVING CRUDE OIL RESIDUES

Yıl 2018, , 691 - 700, 11.12.2018
https://doi.org/10.21923/jesd.413157

Öz










With the increase in
traffic volume and axle loads, the demand of safe travel quality for
communities makes necessary to build durable asphalt pavements. The comfort and
durability parameters that asphalt pavements can provide over the service life
depend on the properties of the bitumen used in asphalt mixtures. One of the
major causes of pavement failure is also the moisture induced damage of asphalt
pavements. Many variables affect the level of water damage in asphalt pavement
layer such as the type of aggregate, bitumen, mixture design and construction,
level of traffic, environment and the additive properties that are introduced
to the bitumen. This study is the aimed to determine the effect of 1%, 2% and
3% addition of crude oil residues within the bitumens on the stripping potential
and moisture susceptibility characteristics of asphalt mixtures. Moisture
susceptibility characteristics of the samples have been evaluated by Nicholson
Stripping Test (ASTM D 1664) and determination of adhesion ability by using
mineral material (GOST 11508-74) as well as images by captured
Leica S 8 AP0 Stereo microscope respectively. The results of experimental study indicated
that  addition of different contents of
crude oil residues within the bitumens increased the resistance of asphalt
mixtures to stripping.

Kaynakça

  • ASTM 1664, 2008. Standard Method of Test for Coating and Stripping of Bitumen Aggregate Mixtures. Conshohocken, PA: American Society for Testing and Materials.
  • ASTM C1252, 1998. Standard test method for uncompacted void content of fine aggregate (as influenced by particle shape, surface texture, and grading). Conshohocken, PA: American Society for Testing and Materials.
  • ASTM C127, 2012. Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate. Conshohocken, PA: American Society for Testing and Materials.
  • ASTM C128, 2012. Standard test method for density, relative density (specific gravity), and absorption of fine aggregate. Conshohocken, PA: American Society for Testing and Materials.
  • ASTM C131, 2006. Standard test method for resistance to degradation of small size coarse aggregate by abrasion and impact in the Los Angeles machine. Conshohocken, PA: American Society for Testing and Materials.
  • ASTM C136, 2008. Standard method for sieve analysis of fine and coarse aggregates. Conshohocken, PA: American Society for Testing and Materials.
  • ASTM C88, 2005. Standard test method for soundness of aggregates by use of sodium sulfate or magnesium sulfate. Conshohocken, PA: American Society for Testing and Materials.
  • ASTM D113-86, 1994. Standard test method for ductility of bituminous materials. Conshohocken, PA: American Society for Testing and Materials.
  • ASTM D2872-12, 2012. Standard test method for effect of heat and air on a moving film of asphalt (Rolling Thin-Film Oven Test). Conshohocken, PA: American Society for Testing and Materials.
  • ASTM D36-06, 2006. Test method for softening point of bitumen (ring-and-ball apparatus). Conshohocken, PA: American Society for Testing and Materials.
  • ASTM D4402-06, 2002. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. Conshohocken, PA: American Society for Testing and Materials.
  • ASTM D4419-90, 2015. Standard test method for measurement of transition temperatures of petroleum waxes by differential scanning calorimetry (DSC). Conshohocken, PA: American Society for Testing and Materials.
  • ASTM D4791, 2010. Standard test method for flat particles, elongated particles, or flat and elongated particles in coarse aggregate. Conshohocken, PA: American Society for Testing and Materials.
  • ASTM D5-06, 2006. Standard test method for penetration of bituminous materials. Conshohocken, PA: American Society for Testing and Materials.
  • Azinfar, B., Zirrahi, M., Hassanzadeh, H., Abedi, J., 2015. A method for characterization of bitumen. Fuel, 153, 240-248.
  • Chaturabong, P., Bahia, H.U., 2017. The evaluation of relative effect of moisture in Hamburg wheel tracking test. Construction and Building Materials, 153, 337-345.
  • European Standard EN 12593, 2007. Bitumen and bituminous binders - Determination of the Fraass breaking point. Brussel: European Committee for Standardization.
  • Fischer, H., Poulikakos L. D., Planche, J. P., Das, P., Grenfell, J., 2013. Challenges while performing AFM on bitumen. Proceedings of the International RILEM Symposium, Stockholm, Sweden.
  • Gedeon, E., Nicolas, C., Achard, C., Rogalski, M., 2005. Characterization of aggregation processes in crude oils using differential scanning calorimetry. Energy & Fuels, 19, 1297-1302.
  • Gorkem, Ç., Şengöz, B., 2009. Predicting stripping and moisture induced damage of asphalt concrete prepared with polymer modified bitumen and hydrated lime. Construction and Building Materials, 23, 2227-2236.
  • GOST 11508-74, 1980. Petroleum bitumens. Methods for determination of bitumen adhesion to marble and sand. Government Committee for Metrology and Standardization.
  • Hamedi, H., Tahami, S.A., 2018. The effect of using anti-stripping additives on moisture damage of hot mix asphalt. International Journal of Adhesion and Adhesives, 81, 90-97.
  • Kumar, S., Srivastava, M., 2017. Meliorate optical textures and mesophase contents by promising approach of deasphalting of petroleum residues. Journal of Industrial and Engineering Chemistry, 48, 133-141.
  • Mansour, F., Vahid, V., 2016. Effect of Liquid Nano material and hydrated lime in improving the moisture behaviour of HMA. Transportation Research Procedia ,17, 506 -512.
  • Rudyk, S., 2018. Relationships between SARA fractions of conventional oil, heavy oil, natural bitumen and residues. Fuel, 216, 330-340.
  • Simanzhenkov, V., Idem, R., 2003. Crude oil chemistry (6. Baskı). New York: Marcel Dekker.
  • Speight, J.G., 1991. The chemistry and technology of petroleum (1.Baskı). New York: Marcel Dekker.
  • Varanda, C., Portugal, I., Ribeiro, J., Silva, A.M.S., Silva, C.M., 2017. Optimization of bitumen formulations using mixture design of experiments (MDOE). Construction and Building Materials, 156, 611-620
  • Whiteoak, D., Read J.M., 2003. The shell bitumen handbook (5. Baskı). London: Thomas Telford Services Ltd.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Jülide Öner 0000-0003-3229-152X

Yayımlanma Tarihi 11 Aralık 2018
Gönderilme Tarihi 6 Nisan 2018
Kabul Tarihi 17 Ekim 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Öner, J. (2018). HAM PETROL KALINTISI İLE ÜRETİLEN BİTÜMLERİN SUYA KARŞI DUYARLILIKLARININ BELİRLENMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 6(4), 691-700. https://doi.org/10.21923/jesd.413157