Araştırma Makalesi
BibTex RIS Kaynak Göster

CHARACTERIZATION AND EVALUTION OF REMOVAL CONDITIONS OF LEAD-ZINC-COPPER FLOTATION PLANT WASTE

Yıl 2019, , 175 - 181, 25.03.2019
https://doi.org/10.21923/jesd.472343

Öz

A large amount of mining waste occures due to the intensive mining activities in our country. These wastes may contain different pollutants depending on the type of mining facilities. The lead-zinc-copper flotation waste was investigated in this study contains significantly calcium, iron, magnesium and sulfur elements. The presence of high concentrations of these elements has an environmental problem. For this reason, in this article, firstly, the mine waste was obtained from the Gümüştaş Mining Corporation, the Lead-Zinc-Copper Enhancement Plant. Then, characterization and iron and sulphate removal experiments were investigated under different inorganic acids. Experimental studies showed that about 30% iron and 85% sulphate removal yields were obtained with 4 M HCl concentration.

Kaynakça

  • Ahmedna, M., Marshall, W.E.,Husseiny, A.A., Rao, R.M., & I. Goktepe, 2004. The use of nutshell carbons in drinking water filters for removal of trace metals, Water Res., 38, 1062-1068. Doi:10.1016/j.watres.2003.10.047
  • Al Aji, B., Yavuz, Y., & Koparal, A.S., 2012. Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes, Separation and Purification Technology, 86, 248–254. https://doi.org/10.1016/j.seppur.2011.11.011
  • APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 21st Ed., APHA, AWWA, WEF, Washington, DC. https://www.standardmethods.org
  • Chuah,T.G. Jumasiah, A., Azni, I., Katayon, S., & Choong, S.Y.T., 2005. Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview, Desalination, 175, 305-316. Doi:10.1016/j.desal.2004.10.014
  • Falagan, C., Grail, B.M,. & Johnson, D.B., 2017. New approaches for extracting and recovering metals from mine tailings, Minerals Engineering, 106, 71-78. https://doi.org/10.1016/j.mineng.2016.10.008
  • Forjan, R., Asensio, V., Rodriguez-Vila, A. & Covelo, E.F. 2014. Effect of amendmends made of waste materials in the physical and chemical recovery of mine soil. Journal of Geochemical Exploration, 147, 91-97. https://doi.org/10.1016/j.gexplo.2014.10.004
  • Fosso-Kankeu, E., Waanders, F., & W. Botes, W. 2015. Recovery of base metals from mine tailings dumps collected in the vicinity of Potchefstroom: leaching assisted by complexing agent. 7th International Conference on Latest Trends in Engineering & Technology (ICLTET’2015), Nov.26-27, Irene, Pretoria, South Africa.
  • Gaber, S.E., Rizk, M.S., & Yehia, M.M., 2011. Extraction of certain heavy metals from sewage sludge using different types of acids. Biokemistri, 23, 41-48. https://www.ajol.info/index.php/biokem/article/view/77670
  • Ghirişan, A.L., Drăgan, S., Pop, A., Simihăian, M., & Miclăuş, V., 2007. Heavy metal removal and neutralization of acid mine waste water - kinetic study. The Canadian Journal of Chemical Engineering, 85, 900-905. https://doi.org/10.1002/cjce.5450850611
  • Jafaripour, A., Rowson, N.A., & Ghataora, G.S., 2015. Utilisation of residue gas sludge (BOS sludge) for removal of heavy metals from acid mine drainage (AMD), International Journal of Mineral Processing, 144, 90–96. https://doi.org/10.1016/j.minpro.2015.10.002
  • Kachhap, S., 2009. Waste management in mining and allied industries, Bachelor of Technology degree in MiningEngineering, National Institute of Technology, Rourkela, Deemed University.
  • Kaur, G., Couperthwaite, S.J., & Millar, G.J, 2018. Performance of bauxite refinery residues for treating acid mine drainage, Journal of Water Process Engineering, 26, 28–37. https://doi.org/10.1016/j.jwpe.2018.09.005
  • Kazemipou, M., Ansari, M., Tajrobehkar, S., Majdzadeh, M., & Kermani, H.R., 2008. Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone, Journal of Hazardous Materials, 150(2), 322-327.https://doi.org/10.1016/j.jhazmat.2007.04.11
  • Kefala, M.I., Zouboulis, A.I., & Matis, K.A., 1999. Biosorption of cadmium ions by Actinomycetes and separation by fotation, Environ. Pollut., 104 (2-1), 283-293. DOI: 10.1016/S0269-7491(98)00178-X
  • Kiliç, E., Font, J., Puig, R., Çolak, S., & Çelik, D., 2011. Chromium recovery from tannery sludge with saponin and oxidative remediation, J. Hazard. Mater., 185, 456–462. https://doi.org/10.1016/j.jhazmat.2010.09.054
  • Komnitsas, K., Paspaliaris, I., Zilberchmidt, M., & Groudev, S. 2001. Environmental impacts at coal waste disposal sites – efficiency of desulfurization technologies, Global Nest: The Int. J., 3, 109-116. https://doi.org/10.30955/gnj.000209
  • Lambert, A., Drogui, P., Daghrir, R., Zaviska, F., & Benzaazoua, M., 2014. Removal of copper in leachate from mining residues using electrochemical technology, Journal of Environmental Management, 133, 78-85. https://doi.org/10.1016/j.jenvman.2013.11.036
  • Liu, Y.G., Zhou, M., Zeng G.M., Li, X., Xu, W.H., & Fan, T., 2007. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching, Journal of Hazardous Materials, 141, 202-208. https://doi.org/10.1016/j.jhazmat.2006.06.113
  • Luo, M.J., Liu, C.L., Xue, J., Li, P., & Yu, J.G., 2017. Leaching kinetics and mechanism of alunite from alunite tailings in highly concentrated KOH solution, Hydrometallurgy, 174, 10-20. https://doi.org/10.1016/j.hydromet.2017.09.008
  • Meer, I. & Nazir, R., 2017. Removal techniques for heavy metals from fly ash, J Mater Cycles Waste Manag, doi:10.1007/s10163-017-0651-z.
  • Nariyan, E., Sillanpää, M., Wolkersdorfer, C., 2017. Electrocoagulation treatment of mine water from the deepest working European metal mine – Performance, isotherm and kinetic studies. Separation and Purification Technology, 177 363–373. https://doi.org/10.1016/j.seppur.2016.12.042
  • Nariyan, E., Wolkersdorfer, C., Sillanpääa, M., 2018. Sulfate removal from acid mine water from the deepest active European mine by precipitation and various electrocoagulation configurations, Journal of Environmental Management, 227, 162–171. https://doi.org/10.1016/j.jenvman.2018.08.095
  • Official Gazette, 2004. Su Kirliliği Kontrolü Yönetmeliği (Regulation on Control of Water Pollution), Çevre ve Orman Bakanlığı Yönetmelikler, 25687 (31/12/2014). http://www.mevzuat.gov.tr/Metin.Aspx?MevzuatKod=7.5.7221&sourceXmlSearch=&MevzuatIliski=0
  • Official Gazette, 2010a. Evsel ve Kentsel Arıtma Çamurlarının Toprakta Kullanılmasına Dair Yönetmelik (Implementing Regulation on the Use of Domestic and Urban Treatment Sludges in Soil), Çevre ve Orman Bakanlığı Yönetmelikler, 27661, 03/08/2010. http://www.mevzuat.gov.tr/Metin.Aspx?MevzuatKod=7.5.14167&MevzuatIliski=0&sourceXmlSearch= Official Gazette, 2010b. Atıkların Düzenli Depolanması Dair Yönetmelik (Regulation on the Landfill of Wastes), Çevre ve Orman Bakanlığı Yönetmelikler, 27533, 26/03/2010, http://www.mevzuat.gov.tr/Metin.Aspx?MevzuatKod=7.5.13887&MevzuatIliski=0&sourceXmlSearch=
  • Ok, Y.S., Kim, S.C., Kim, D.K., Skousen, J.G., Lee, J.S. Cheong, Y.W., Kim, S.J., & Yang, J.E. 2011. Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea. Environmental Geochemistry and Health, 33, 3–30. https://doi.org/10.1007/s10653-010-9364-0
  • Park, S.M., Shin, S.Y., Yang, J.S., Ji, S.W., & Baek, K. 2015. Selective recovery of dissolved metals from mine drainage using electrochemical reactions. Electrochimica Acta, 181, 248-254. https://doi.org/10.1016/j.electacta.2015.03.085
  • Rosa, M.A., Egido, J.A., & Márquez, M.C., 2017. Enhanced electrochemical removal of arsenic and heavy metals from mine tailings , Journal of the Taiwan Institute of Chemical Engineers, 78, 409-415. https://doi.org/10.1016/j.jtice.2017.06.046
  • Sarı, B., 2005. The use of bioleaching in removal of heavy metal industry waste sludges, Ph.D. dissertation, Dept. Environ. Eng., Cukurova Univ., Turkey.
  • Sayılgan, E. & Kürklü, K., 2018. Removal of iron and aluminum from fly ash sample with Taguchi Approach, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23(3), 133-142. DOI: 10.17482/uumfd.431352 133
  • Wang, J.W., Bejan, D., & Bunce, N.J., 2003. Removal of arsenic from synthetic acid mine drainage by electrochemical pH adjustment and coprecipitation with iron hydroxide, Environmental Science and Technology, 37, 4500–4506. http://doi.org/10.1021/es030359y
  • Ye, M., Li, G., Yan, P., Ren, J., Zheng, L., Han, D., Sun, S., Huang, S., & Zhong, Y., 2017. Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation, Chemosphere, 185, 1189-1196. https://doi.org/10.1016/j.chemosphere.2017.07.124
  • Yoshizaki, S. & Tomida, T., 2000. Principle and process of heavy metal removal from sewage sludge, Environ. Sci. Technol., 34, 1572-1575. http://doi.org/10.1021/es990979s

KURŞUN-ÇİNKO-BAKIR İYİLEŞTİRME TESİSİ ATIĞININ KARAKTERİZASYON VE GİDERİM ŞARTLARININ DEĞERLENDİRİLMESİ

Yıl 2019, , 175 - 181, 25.03.2019
https://doi.org/10.21923/jesd.472343

Öz

Ülkemizde yoğun madencilik çalışmaları neticesinde, fazla miktarda madencilik atığı ortaya çıkmaktadır. Bu atıklar, işletilen maden işletmesinin türüne göre farklı kirleticiler içerebilmektedir. Bu çalışma kapsamında araştırılmış olan kurşun-çinko-bakır flotasyon atığı önemli ölçüde kalsiyum, demir, magnezyum ve sülfür elementlerini içermektedir. Bu elementlerin yüksek konsantrasyonda bulunması çevresel açıdan tehdit oluşturmaktadır. Bu sebeple, bu makalede, Gümüştaş Madencilik İşletmesi, Kurşun-Çinko-Bakır İyileştirme Tesisi’nden temin edilen maden atığının karakterizasyonu neticesinde farklı inorganik asitlerle demir ve sülfat elementlerinin giderimleri değerlendirilmiştir. Deneysel çalışmalar neticesinde 4 M HCl konsantrasyonunda yaklaşık olarak %30 demir, %85 sülfat giderimi elde edilmiştir.

Kaynakça

  • Ahmedna, M., Marshall, W.E.,Husseiny, A.A., Rao, R.M., & I. Goktepe, 2004. The use of nutshell carbons in drinking water filters for removal of trace metals, Water Res., 38, 1062-1068. Doi:10.1016/j.watres.2003.10.047
  • Al Aji, B., Yavuz, Y., & Koparal, A.S., 2012. Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes, Separation and Purification Technology, 86, 248–254. https://doi.org/10.1016/j.seppur.2011.11.011
  • APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 21st Ed., APHA, AWWA, WEF, Washington, DC. https://www.standardmethods.org
  • Chuah,T.G. Jumasiah, A., Azni, I., Katayon, S., & Choong, S.Y.T., 2005. Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview, Desalination, 175, 305-316. Doi:10.1016/j.desal.2004.10.014
  • Falagan, C., Grail, B.M,. & Johnson, D.B., 2017. New approaches for extracting and recovering metals from mine tailings, Minerals Engineering, 106, 71-78. https://doi.org/10.1016/j.mineng.2016.10.008
  • Forjan, R., Asensio, V., Rodriguez-Vila, A. & Covelo, E.F. 2014. Effect of amendmends made of waste materials in the physical and chemical recovery of mine soil. Journal of Geochemical Exploration, 147, 91-97. https://doi.org/10.1016/j.gexplo.2014.10.004
  • Fosso-Kankeu, E., Waanders, F., & W. Botes, W. 2015. Recovery of base metals from mine tailings dumps collected in the vicinity of Potchefstroom: leaching assisted by complexing agent. 7th International Conference on Latest Trends in Engineering & Technology (ICLTET’2015), Nov.26-27, Irene, Pretoria, South Africa.
  • Gaber, S.E., Rizk, M.S., & Yehia, M.M., 2011. Extraction of certain heavy metals from sewage sludge using different types of acids. Biokemistri, 23, 41-48. https://www.ajol.info/index.php/biokem/article/view/77670
  • Ghirişan, A.L., Drăgan, S., Pop, A., Simihăian, M., & Miclăuş, V., 2007. Heavy metal removal and neutralization of acid mine waste water - kinetic study. The Canadian Journal of Chemical Engineering, 85, 900-905. https://doi.org/10.1002/cjce.5450850611
  • Jafaripour, A., Rowson, N.A., & Ghataora, G.S., 2015. Utilisation of residue gas sludge (BOS sludge) for removal of heavy metals from acid mine drainage (AMD), International Journal of Mineral Processing, 144, 90–96. https://doi.org/10.1016/j.minpro.2015.10.002
  • Kachhap, S., 2009. Waste management in mining and allied industries, Bachelor of Technology degree in MiningEngineering, National Institute of Technology, Rourkela, Deemed University.
  • Kaur, G., Couperthwaite, S.J., & Millar, G.J, 2018. Performance of bauxite refinery residues for treating acid mine drainage, Journal of Water Process Engineering, 26, 28–37. https://doi.org/10.1016/j.jwpe.2018.09.005
  • Kazemipou, M., Ansari, M., Tajrobehkar, S., Majdzadeh, M., & Kermani, H.R., 2008. Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone, Journal of Hazardous Materials, 150(2), 322-327.https://doi.org/10.1016/j.jhazmat.2007.04.11
  • Kefala, M.I., Zouboulis, A.I., & Matis, K.A., 1999. Biosorption of cadmium ions by Actinomycetes and separation by fotation, Environ. Pollut., 104 (2-1), 283-293. DOI: 10.1016/S0269-7491(98)00178-X
  • Kiliç, E., Font, J., Puig, R., Çolak, S., & Çelik, D., 2011. Chromium recovery from tannery sludge with saponin and oxidative remediation, J. Hazard. Mater., 185, 456–462. https://doi.org/10.1016/j.jhazmat.2010.09.054
  • Komnitsas, K., Paspaliaris, I., Zilberchmidt, M., & Groudev, S. 2001. Environmental impacts at coal waste disposal sites – efficiency of desulfurization technologies, Global Nest: The Int. J., 3, 109-116. https://doi.org/10.30955/gnj.000209
  • Lambert, A., Drogui, P., Daghrir, R., Zaviska, F., & Benzaazoua, M., 2014. Removal of copper in leachate from mining residues using electrochemical technology, Journal of Environmental Management, 133, 78-85. https://doi.org/10.1016/j.jenvman.2013.11.036
  • Liu, Y.G., Zhou, M., Zeng G.M., Li, X., Xu, W.H., & Fan, T., 2007. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching, Journal of Hazardous Materials, 141, 202-208. https://doi.org/10.1016/j.jhazmat.2006.06.113
  • Luo, M.J., Liu, C.L., Xue, J., Li, P., & Yu, J.G., 2017. Leaching kinetics and mechanism of alunite from alunite tailings in highly concentrated KOH solution, Hydrometallurgy, 174, 10-20. https://doi.org/10.1016/j.hydromet.2017.09.008
  • Meer, I. & Nazir, R., 2017. Removal techniques for heavy metals from fly ash, J Mater Cycles Waste Manag, doi:10.1007/s10163-017-0651-z.
  • Nariyan, E., Sillanpää, M., Wolkersdorfer, C., 2017. Electrocoagulation treatment of mine water from the deepest working European metal mine – Performance, isotherm and kinetic studies. Separation and Purification Technology, 177 363–373. https://doi.org/10.1016/j.seppur.2016.12.042
  • Nariyan, E., Wolkersdorfer, C., Sillanpääa, M., 2018. Sulfate removal from acid mine water from the deepest active European mine by precipitation and various electrocoagulation configurations, Journal of Environmental Management, 227, 162–171. https://doi.org/10.1016/j.jenvman.2018.08.095
  • Official Gazette, 2004. Su Kirliliği Kontrolü Yönetmeliği (Regulation on Control of Water Pollution), Çevre ve Orman Bakanlığı Yönetmelikler, 25687 (31/12/2014). http://www.mevzuat.gov.tr/Metin.Aspx?MevzuatKod=7.5.7221&sourceXmlSearch=&MevzuatIliski=0
  • Official Gazette, 2010a. Evsel ve Kentsel Arıtma Çamurlarının Toprakta Kullanılmasına Dair Yönetmelik (Implementing Regulation on the Use of Domestic and Urban Treatment Sludges in Soil), Çevre ve Orman Bakanlığı Yönetmelikler, 27661, 03/08/2010. http://www.mevzuat.gov.tr/Metin.Aspx?MevzuatKod=7.5.14167&MevzuatIliski=0&sourceXmlSearch= Official Gazette, 2010b. Atıkların Düzenli Depolanması Dair Yönetmelik (Regulation on the Landfill of Wastes), Çevre ve Orman Bakanlığı Yönetmelikler, 27533, 26/03/2010, http://www.mevzuat.gov.tr/Metin.Aspx?MevzuatKod=7.5.13887&MevzuatIliski=0&sourceXmlSearch=
  • Ok, Y.S., Kim, S.C., Kim, D.K., Skousen, J.G., Lee, J.S. Cheong, Y.W., Kim, S.J., & Yang, J.E. 2011. Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea. Environmental Geochemistry and Health, 33, 3–30. https://doi.org/10.1007/s10653-010-9364-0
  • Park, S.M., Shin, S.Y., Yang, J.S., Ji, S.W., & Baek, K. 2015. Selective recovery of dissolved metals from mine drainage using electrochemical reactions. Electrochimica Acta, 181, 248-254. https://doi.org/10.1016/j.electacta.2015.03.085
  • Rosa, M.A., Egido, J.A., & Márquez, M.C., 2017. Enhanced electrochemical removal of arsenic and heavy metals from mine tailings , Journal of the Taiwan Institute of Chemical Engineers, 78, 409-415. https://doi.org/10.1016/j.jtice.2017.06.046
  • Sarı, B., 2005. The use of bioleaching in removal of heavy metal industry waste sludges, Ph.D. dissertation, Dept. Environ. Eng., Cukurova Univ., Turkey.
  • Sayılgan, E. & Kürklü, K., 2018. Removal of iron and aluminum from fly ash sample with Taguchi Approach, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23(3), 133-142. DOI: 10.17482/uumfd.431352 133
  • Wang, J.W., Bejan, D., & Bunce, N.J., 2003. Removal of arsenic from synthetic acid mine drainage by electrochemical pH adjustment and coprecipitation with iron hydroxide, Environmental Science and Technology, 37, 4500–4506. http://doi.org/10.1021/es030359y
  • Ye, M., Li, G., Yan, P., Ren, J., Zheng, L., Han, D., Sun, S., Huang, S., & Zhong, Y., 2017. Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation, Chemosphere, 185, 1189-1196. https://doi.org/10.1016/j.chemosphere.2017.07.124
  • Yoshizaki, S. & Tomida, T., 2000. Principle and process of heavy metal removal from sewage sludge, Environ. Sci. Technol., 34, 1572-1575. http://doi.org/10.1021/es990979s
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Mühendisliği
Bölüm Araştırma Makalesi \ Research Makaleler
Yazarlar

Emine Sayılgan 0000-0002-6756-1545

Gözde Karacan Bu kişi benim 0000-0003-3360-2756

Yayımlanma Tarihi 25 Mart 2019
Gönderilme Tarihi 19 Ekim 2018
Kabul Tarihi 7 Şubat 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Sayılgan, E., & Karacan, G. (2019). CHARACTERIZATION AND EVALUTION OF REMOVAL CONDITIONS OF LEAD-ZINC-COPPER FLOTATION PLANT WASTE. Mühendislik Bilimleri Ve Tasarım Dergisi, 7(1), 175-181. https://doi.org/10.21923/jesd.472343

Cited By