Araştırma Makalesi
BibTex RIS Kaynak Göster

GÜMÜŞ AKIM TOPLAYICI MÜREKKEPLERİNDE FRİT BULUNMASININ KATI OKSİT YAKIT HÜCRESİ KATOTLARININ ELEKTROKİMYASAL PERFORMANSINA ETKİSİ

Yıl 2019, , 796 - 802, 19.12.2019
https://doi.org/10.21923/jesd.474834

Öz

Gümüş (Ag) içeren asıltılar (mürekkepler) orta sıcaklıklarda
çalışan katı oksit yakıt hücresi (KOYH) katotları üzerine sıklıkla akım
toplayıcı olarak uygulanırlar. Bu mürekkeplere camsı faz (frit) parçacıklarının
ısıl işlem sonrasında altlığa iyi yapışma sağlanması amacıyla eklenmesi
geleneksel olarak uygulanagelmiştir. Fakat bu parçacıkların Ag mürekkeplerine
eklenmelerinin akım toplayıcı mikroyapısı ve performansı üzerindeki etkileri net
olarak tespit edilmemiştir. Bu çalışmada gümüş mürekkeplerine frit eklenmesinin
La0.6Sr0.4FeO3 (LSF) ince film katotlarının
elektrokimyasal performansına etkisi sunulmaktadır. Mikroyapısal analizler frit
etkisinin Ag akım toplayıcı katmanını yoğunlaştırdığını göstermektedir. Ag
yerine eklenen camsı faz Ag /LSF ince film katot arayüzey alanını azaltmakta ve
yüksek ohmik dirence sebep olmaktadır. Camsı faz ayrıca LSF yüzeyini
mühürlemekte, böylece yüksek polarizasyon dirençlerine yol açmaktadır. Simetrik
yarı-hücreler üzerinde gerçekleştirilen elektrokimyasal empedans spektroskopisi
ölçümleri frit içermeyen Ag mürekkepleri kullanıldığında itriya katkılı
zirkonya elektrolitin özdirenci ile örtüşen ohmik dirençler ve kabul edilebilir
katot polarizasyon dirençlerinin (örn., 700
ve
durağan hava ortamında 0.5
Ωcm2) elde
edilebildiğini göstermektedir. 

Kaynakça

  • Chen, X., Tao, Z., Hou, G., Xu, N., Zhang, Q., 2015. La0.7Sr0.3FeO3−δ composite cathode enhanced by Sm0.5Sr0.5CoO3−δ impregnation for proton conducting SOFCs. Electrochim. Acta. 165, 142–148.
  • Fergus, J. W., 2005. Sealants for solid oxide fuel cells. J. Power Sources. 147, 46–57.
  • Gong, Y., Qin, C., Huang, K., 2012. Can Silver Be a Reliable Current Collector for Electrochemical Tests? ECS Electrochemistry Letters. 2, F4-F7.
  • Guo, Y. M., Zhou, Y. B., Chen, D. J., Shi, H. G., Ran, R., Shao, Z.P., 2011. Significant impact of the current collection material and method on the performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ electrodes in solid oxide fuel cells. J. Power Sources. 196, 5511-5519.
  • Kontoulis, I., Steele, B.C.H. 1991. Determination of oxygen diffusion in solid Ag by an electrochemical technique. Solid State Ionics. 47, 317-324.
  • Kosacki, I., Rouleau, C. M., Becher, P. F., Bentley, J., Lowndes, D. H., 2005. Nanoscale effects on the ionic conductivity in highly textured YSZ thin films. Solid State Ionics. 176, 1319 – 1326.
  • Kwon, O.H., Choi, G.M., 2006. Electrical conductivity of thick film YSZ. Solid State Ionics. 177, 3057-3062.
  • Li, M., Wang, Y., Wang, Y., Chen, F., Xia, C., 2014. Bismuth Doped Lanthanum Ferrite Perovskites as Novel Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells. ACS Appl. Mater. Interfaces. 6, 11286−11294.
  • Lyskov, N. V., Kolchina, L. M., Galin, M. Z., Mazo, G. N., 2018. Development of lanthanum-doped praseodymium cuprates as cathode materials for intermediate-temperature solid oxide fuel cells. Solid State Ionics. 319; 156-161.
  • Patrakeev, M. V., Leonidov, I. A., Kozhevnikov, V. L., Poeppelmeier, K.R., 2005. p-Type electron transport in La1−xSrxFeO3−δ at high temperatures J. Solid State Chem. 178; 921–927.
  • Primdahl, S., Mogensen, M. 1999. Gas Diffusion Impedance in Characterization of Solid Oxide Fuel Cell Anodes. J. Electrochem. Soc. 146; 2827-2833.
  • Rane, S. B., Seth, T., Phatak, G. J., Amalnerkar, D. P., 2004. Effect of inorganic binders on the properties of silver thick films. J. Mater. Sci. Mater. Electron. 15, 103-106.
  • Sarikaya, A., Petrovsky, V., Dogan, F. Development of a silver based stable current collector for solid oxide fuel cell cathodes in: proceedings of the materials research society fall meeting 2011, Boston, United States, November 28-December 2, vol. 1385, Cambridge University Press, 2012, p. c07.
  • Sarikaya, A., Petrovsky, V., Dogan, F., 2012. Silver composites as highly stable cathode current collectors for solid oxide fuel cells. J. Mater. Res. 27, 2024-2029.
  • Tatko, M., Mosiałek, M., Dudek, M., Nowak, P., Kędra, A., Bielańska E., 2015. Composite cathode materials Sm0.5Sr0.5CoO3–La0.6Sr0.4FeO3for solid oxide fuel cells. Solid State Ionics. 271, 103–108.
  • Wachsman, E., Ishihara, T., Kilner, J., 2014. Low-temperature solid-oxide fuel cells. MRS Bulletin. 39, 773-779.
  • West, M., Manthiram, A., 2015. Synthesis of 3-dimensional silver networks and their application in solid oxide fuel cells. Int. J. Hydrogen Energy. 40, 4234-4240.
  • Zhu, J.H., Ghezel-Ayagh, H., 2017. Cathode-side electrical contact and contact materials for solid oxide fuel cell stacking: A review. Int. J. Hydrogen Energy. 42, 24278-24300

EFFECT OF FRIT CONTENT IN THE SILVER CURRENT COLLECTOR INKS ON THE ELECTROCHEMICAL PERFORMANCE OF SOLID OXIDE FUEL CELL CATHODES

Yıl 2019, , 796 - 802, 19.12.2019
https://doi.org/10.21923/jesd.474834

Öz

Silver (Ag) inks are
often used as precursors to form current collector layers on the
intermediate-temperature solid oxide fuel cell (SOFC) cathodes. It has been
common practice to add glassy phase (frit) particles into the Ag inks to
achieve good adhesion between the current collector and the cathode layers upon
firing. However, insufficient attention has been given to the effects of frit
content on the microstructure and the current collecting properties of Ag
layers. This study presents the effect of frit addition on the measured
electrochemical performance of La0.6Sr0.4FeO3
(LSF) thin film cathodes. Microstructural analyses reveal that frit addition
significantly densifies the Ag current collector layer. The glassy phase
replacing Ag reduces the contact area between the Ag particles and the LSF thin
film cathode, resulting in increased ohmic resistances. The glassy phase also
seals the electrocatalytic surface of the LSF thin film, thus enhancing the
cathode polarization resistances. Electrochemical impedance spectroscopy
measurements on symmetrical half-cells reveal that ohmic resistances matching
the resistivity of the yttria stabilized zirconia electrolyte (YSZ) and
acceptable cathode polarization resistances (e.g., 0.5 Ωcm2 at 700
in air) can be obtained when frit-free Ag current collector inks are
used. 

Kaynakça

  • Chen, X., Tao, Z., Hou, G., Xu, N., Zhang, Q., 2015. La0.7Sr0.3FeO3−δ composite cathode enhanced by Sm0.5Sr0.5CoO3−δ impregnation for proton conducting SOFCs. Electrochim. Acta. 165, 142–148.
  • Fergus, J. W., 2005. Sealants for solid oxide fuel cells. J. Power Sources. 147, 46–57.
  • Gong, Y., Qin, C., Huang, K., 2012. Can Silver Be a Reliable Current Collector for Electrochemical Tests? ECS Electrochemistry Letters. 2, F4-F7.
  • Guo, Y. M., Zhou, Y. B., Chen, D. J., Shi, H. G., Ran, R., Shao, Z.P., 2011. Significant impact of the current collection material and method on the performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ electrodes in solid oxide fuel cells. J. Power Sources. 196, 5511-5519.
  • Kontoulis, I., Steele, B.C.H. 1991. Determination of oxygen diffusion in solid Ag by an electrochemical technique. Solid State Ionics. 47, 317-324.
  • Kosacki, I., Rouleau, C. M., Becher, P. F., Bentley, J., Lowndes, D. H., 2005. Nanoscale effects on the ionic conductivity in highly textured YSZ thin films. Solid State Ionics. 176, 1319 – 1326.
  • Kwon, O.H., Choi, G.M., 2006. Electrical conductivity of thick film YSZ. Solid State Ionics. 177, 3057-3062.
  • Li, M., Wang, Y., Wang, Y., Chen, F., Xia, C., 2014. Bismuth Doped Lanthanum Ferrite Perovskites as Novel Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells. ACS Appl. Mater. Interfaces. 6, 11286−11294.
  • Lyskov, N. V., Kolchina, L. M., Galin, M. Z., Mazo, G. N., 2018. Development of lanthanum-doped praseodymium cuprates as cathode materials for intermediate-temperature solid oxide fuel cells. Solid State Ionics. 319; 156-161.
  • Patrakeev, M. V., Leonidov, I. A., Kozhevnikov, V. L., Poeppelmeier, K.R., 2005. p-Type electron transport in La1−xSrxFeO3−δ at high temperatures J. Solid State Chem. 178; 921–927.
  • Primdahl, S., Mogensen, M. 1999. Gas Diffusion Impedance in Characterization of Solid Oxide Fuel Cell Anodes. J. Electrochem. Soc. 146; 2827-2833.
  • Rane, S. B., Seth, T., Phatak, G. J., Amalnerkar, D. P., 2004. Effect of inorganic binders on the properties of silver thick films. J. Mater. Sci. Mater. Electron. 15, 103-106.
  • Sarikaya, A., Petrovsky, V., Dogan, F. Development of a silver based stable current collector for solid oxide fuel cell cathodes in: proceedings of the materials research society fall meeting 2011, Boston, United States, November 28-December 2, vol. 1385, Cambridge University Press, 2012, p. c07.
  • Sarikaya, A., Petrovsky, V., Dogan, F., 2012. Silver composites as highly stable cathode current collectors for solid oxide fuel cells. J. Mater. Res. 27, 2024-2029.
  • Tatko, M., Mosiałek, M., Dudek, M., Nowak, P., Kędra, A., Bielańska E., 2015. Composite cathode materials Sm0.5Sr0.5CoO3–La0.6Sr0.4FeO3for solid oxide fuel cells. Solid State Ionics. 271, 103–108.
  • Wachsman, E., Ishihara, T., Kilner, J., 2014. Low-temperature solid-oxide fuel cells. MRS Bulletin. 39, 773-779.
  • West, M., Manthiram, A., 2015. Synthesis of 3-dimensional silver networks and their application in solid oxide fuel cells. Int. J. Hydrogen Energy. 40, 4234-4240.
  • Zhu, J.H., Ghezel-Ayagh, H., 2017. Cathode-side electrical contact and contact materials for solid oxide fuel cell stacking: A review. Int. J. Hydrogen Energy. 42, 24278-24300
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi \ Research Makaleler
Yazarlar

Emrah Demirkal Bu kişi benim 0000-0001-7607-2009

Aligül Büyükaksoy 0000-0003-2227-8938

Yayımlanma Tarihi 19 Aralık 2019
Gönderilme Tarihi 25 Ekim 2018
Kabul Tarihi 27 Mayıs 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Demirkal, E., & Büyükaksoy, A. (2019). EFFECT OF FRIT CONTENT IN THE SILVER CURRENT COLLECTOR INKS ON THE ELECTROCHEMICAL PERFORMANCE OF SOLID OXIDE FUEL CELL CATHODES. Mühendislik Bilimleri Ve Tasarım Dergisi, 7(4), 796-802. https://doi.org/10.21923/jesd.474834