Araştırma Makalesi
BibTex RIS Kaynak Göster

PHYSICAL PARAMETER EFFECTS ON 3D NUMERICAL MODELING OF GROUND PENETRATING RADAR (GPR): DNAPL CASE STUDY

Yıl 2021, , 476 - 494, 20.06.2021
https://doi.org/10.21923/jesd.675785

Öz

In this study, the effect of the physical parameters directly affecting the performance of the ground radar (GPR) method on the field was investigated by using a three-dimensional numerical model. While the medium was designed as saturated sand, the properties of dense non-aqueous phase liquids (DNAPL) were used as buried mass. Trichloroethylene (TCE), Tetrachlorethylene (PCE), Trichloroethane, and Dichloroethane were selected as DNAPL types. 1.5GHz center frequency GSSI brand GPR antenna was used as a source. In the first stage, while the physical parameters of the medium were gradually increased, the physical parameters of the DNAPL mass were kept constant. In the second stage, the opposite process was applied. When the radargrams were examined, it was observed that the reflections of the DNAPL mass were delayed due to the increase of the relative dielectric permittivity of the medium. In addition, TCE was the most detectable DNAPL type that causes the most obvious reflections. When the electrical conductivity value was increased gradually, electromagnetic energy was absorbed and recorded as weak reflections. It was observed that the gradual increase of the relative magnetic permeability value caused strong multiple reflections.

Kaynakça

  • Ajo-Franklin, J. B., Geller, J. T., Harris, J. M., 2006. A survey of the geophysical properties of chlorinated DNAPLs. Journal of Applied Geophysics, 59(3), 177–189.
  • Annan, A. P., 1973. Radio interferometry depth sounding: Part I—Theoretical discussion. Geophysics, 38(3), 557-580.
  • Annan, A. P., 2003. Ground Penetrating Radar Principles, Procedures & Applications, Sensors and software, Mississauga, ON, Canada.
  • Balkaya Ç., 2010. Karşılıklı Kuyu Yer Radarı Verisinin İki Boyutlu Seyahat Zamanı Tomografisi. Doktora Tezi. Dokuz Eylül Üniversitesi, İzmir, 283667.
  • Balkaya, Ç., Kalyoncuoğlu, Ü. Y., Özhanlı M., Merter, G., Çakmak, O., Güven, I. T., 2018. Ground‐penetrating radar and electrical resistivity tomography studies in the biblical Pisidian Antioch city, southwest Anatolia. Archaeological Prospection, 25(4), 285-300.
  • Bayrak, M. Ç., Tigdemir, M., Karaşahin, M., Çakmak, O., 2020. Mühendislik Bilimleri ve Tasarım Dergisi, 8(2), 572-581.
  • Bianchini C. L., Tosti, F., Economou, N., Benedetto, F., 2019. Signal Processing of GPR Data for Road Surveys. Geosciences, 9(2), 96.
  • Cai, J., McMechan, G. A., 1995. Ray-based synthesis of bistatic ground-penetrating radar profiles. Geophysics, 60(1), 87-96.
  • Carcione, J. M., 1996. Ground-radar numerical modeling applied to engineering problems. European Journal of Environmental and Engineering Geophysics, 1, 65-81.
  • Çiydem M., Koç S., 2014. Zaman-Uzayda Sonlu Farklar Yöntemin Dezavantajları İçin Geometrik Optik Yöntemlerin Kullanımı. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 29(1).
  • Diamanti N., 2008. An efficient ground penetrating radar finite-difference time-domain subgridding scheme and its application to the non-destructive testing of masonry arch bridges. Doktora Tezi. The University of Edinburgh, UK.
  • Elsherbeni A. Z., Demir V., 2016. The finite-difference time-domain method for electromagnetics with MATLAB simulations. ACES Series on Computational Electromagnetics and Engineering.
  • Feng, J., Su, Y., Li, C., Dai, S., Xing, S., Xiao, Y., 2019. An imaging method for Chang’e− 5 Lunar Regolith Penetrating Radar. Planetary and Space Science, 167, 9-16.
  • Giannakis, I., Giannopoulos, A., Warren, C., 2015. A realistic FDTD numerical modeling framework of ground penetrating radar for landmine detection. IEEE journal of selected topics in applied earth observations and remote sensing, 9(1), 37-51.
  • Giannopoulos A., 2005. Modelling ground penetrating radar by GprMax, Construction and Building Materials, 19(10), 755-762.
  • Giannopoulos, A., 2011. Unsplit implementation of higher order PMLs. IEEE Transactions on Antennas and Propagation, 60(3), 1479-1485.
  • Goodman, D., 1994. Ground-penetrating radar simulation in engineering and archaeology. Geophysics, 59(2), 224-232.
  • Hamran, S. E., Paige, D. A., Amundsen, H. E., Berger, T., Brovoll, S., Carter, L., …Øyan, M. J., 2020. Radar imager for Mars’ subsurface experiment—RIMFAX. Space Science Reviews, 216(8), 1-39.
  • Irving J., Knight R., 2006. Numerical modeling of ground-penetrating radar in 2-D using MATLAB. Computers and Geosciences, 2006, 32(9),1247-1258.
  • Kadioglu, S., Ulugergerli, E. U., 2012. Imaging karstic cavities in transparent 3D volume of the GPR data set in Akkopru dam, Mugla, Turkey. Nondestructive Testing and Evaluation, 27(3), 263-271.
  • Kaplanvural, İ., Pekşen, E., Özkap, K., 2018. Volumetric water content estimation of C-30 concrete using GPR. Construction and Building Materials, 166, 141-146.
  • Kurtulmuş T., Drahor M., 2008. Yer radarı modellemesinde fiziksel ve geometrik parametre etkilerinin araştırılması, Yerbilimleri, 29(2), 37-52.
  • Orlando, L., Palladini, L., 2019. Time-lapse laboratory tests to monitor multiple phases of DNAPL in a porous medium. Near Surface Geophysics, 17(1), 55-68.
  • Özkap, K., 2019. Yer radarı yöntemi ile gelişmiş üç boyutlu DNAPL modelleme. Doktora Tezi. Kocaeli Üniversitesi, Türkiye, 599062.
  • Özkap, K., Pekşen, E., Kaplanvural, İ., Çaka, D., 2020. 3D scanner technology implementation to numerical modeling of GPR. Journal of Applied Geophysics, 179, 104086.
  • Roberts, R. L., Daniels, J. J., 1997. Modeling near-field GPR in three dimensions using the FDTD method, 62(4), 114-1126.
  • Schotsmans, E. M., Fletcher, J. N., Denton, J., Janaway, R. C., Wilson, A. S., 2014. Long-term effects of hydrated lime and quicklime on the decay of human remains using pig cadavers as human body analogues: field experiments. Forensic science international, 238, 141-e1.
  • Warren C., Giannopoulos A., 2011. Creating finite-difference time-domain models of commercial ground-penetrating radar antennas using Taguchi’s optimization method. Geophysics, 76(2), G37-G47.
  • Warren C., Giannopoulos A., Giannakis I., 2016. gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar. Computer Physics Communications, 209, 163-170.
  • Yee, K.,1966. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on antennas and propagation, 14(3), 302-307.
  • Zeng, X., McMechan, G. A., Cai, J., Chen, H. W., 1995. Comparison of ray and Fourier methods for modeling monostatic ground-penetrating radar profiles. Geophysics, 60(6), 1727-1734.
  • Zeng, X., McMechan, G. A., 1997. GPR characterization of buried tanks and pipes. Geophysics, 62(3), 797-806.

YER RADARI (GPR) İÇİN 3B SAYISAL MODELLEMEDE FİZİKSEL PARAMETRE ETKİLERİ: DNAPL ÖRNEĞİ

Yıl 2021, , 476 - 494, 20.06.2021
https://doi.org/10.21923/jesd.675785

Öz

Bu çalışmada yer radarı yöntemi için sayısal modelleme benzetimleri yapılmıştır. Bu amaçla 3B sayısal model seti tasarlanmıştır. Model seti içerisinde ortama ve gömülü nesneye ait fiziksel parametre değerleri değiştirilerek radargramlara etkisi incelenmiştir. İncelenen bu parametreler göreceli dielektriksel geçirgenlik, elektriksel iletkenlik ve göreceli manyetik geçirgenlik değerleridir. Aranan gömülü nesne olarak ise yeraltı su sistemleri için büyük tehlike arz eden Dense non-aqueous phase liquids (DNAPL) olarak adlandırılan kirleticilere ait özellikler kullanılmıştır. Modellemelerde kullanılan DNAPL türleri; Trikloroetilen (TCE), Tetrakloroetilen (PCE), Trikloroetan ve Dikloroetan seçilmiştir. Sayısal modellemelerde kaynak olarak GSSI firmasına ait 1.5GHz anten frekansına sahip anten modeli kullanılmıştır. Elde edilen sentetik radargramlar hem izler hem de profiller üzerinden karşılaştırılmıştır. Tüm bu sonuçlar irdelendiğinde fiziksel parametrelerin yer radarı yöntemi üzerindeki etkisi ayrıntılı bir şekilde ortaya konmuştur.

Kaynakça

  • Ajo-Franklin, J. B., Geller, J. T., Harris, J. M., 2006. A survey of the geophysical properties of chlorinated DNAPLs. Journal of Applied Geophysics, 59(3), 177–189.
  • Annan, A. P., 1973. Radio interferometry depth sounding: Part I—Theoretical discussion. Geophysics, 38(3), 557-580.
  • Annan, A. P., 2003. Ground Penetrating Radar Principles, Procedures & Applications, Sensors and software, Mississauga, ON, Canada.
  • Balkaya Ç., 2010. Karşılıklı Kuyu Yer Radarı Verisinin İki Boyutlu Seyahat Zamanı Tomografisi. Doktora Tezi. Dokuz Eylül Üniversitesi, İzmir, 283667.
  • Balkaya, Ç., Kalyoncuoğlu, Ü. Y., Özhanlı M., Merter, G., Çakmak, O., Güven, I. T., 2018. Ground‐penetrating radar and electrical resistivity tomography studies in the biblical Pisidian Antioch city, southwest Anatolia. Archaeological Prospection, 25(4), 285-300.
  • Bayrak, M. Ç., Tigdemir, M., Karaşahin, M., Çakmak, O., 2020. Mühendislik Bilimleri ve Tasarım Dergisi, 8(2), 572-581.
  • Bianchini C. L., Tosti, F., Economou, N., Benedetto, F., 2019. Signal Processing of GPR Data for Road Surveys. Geosciences, 9(2), 96.
  • Cai, J., McMechan, G. A., 1995. Ray-based synthesis of bistatic ground-penetrating radar profiles. Geophysics, 60(1), 87-96.
  • Carcione, J. M., 1996. Ground-radar numerical modeling applied to engineering problems. European Journal of Environmental and Engineering Geophysics, 1, 65-81.
  • Çiydem M., Koç S., 2014. Zaman-Uzayda Sonlu Farklar Yöntemin Dezavantajları İçin Geometrik Optik Yöntemlerin Kullanımı. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 29(1).
  • Diamanti N., 2008. An efficient ground penetrating radar finite-difference time-domain subgridding scheme and its application to the non-destructive testing of masonry arch bridges. Doktora Tezi. The University of Edinburgh, UK.
  • Elsherbeni A. Z., Demir V., 2016. The finite-difference time-domain method for electromagnetics with MATLAB simulations. ACES Series on Computational Electromagnetics and Engineering.
  • Feng, J., Su, Y., Li, C., Dai, S., Xing, S., Xiao, Y., 2019. An imaging method for Chang’e− 5 Lunar Regolith Penetrating Radar. Planetary and Space Science, 167, 9-16.
  • Giannakis, I., Giannopoulos, A., Warren, C., 2015. A realistic FDTD numerical modeling framework of ground penetrating radar for landmine detection. IEEE journal of selected topics in applied earth observations and remote sensing, 9(1), 37-51.
  • Giannopoulos A., 2005. Modelling ground penetrating radar by GprMax, Construction and Building Materials, 19(10), 755-762.
  • Giannopoulos, A., 2011. Unsplit implementation of higher order PMLs. IEEE Transactions on Antennas and Propagation, 60(3), 1479-1485.
  • Goodman, D., 1994. Ground-penetrating radar simulation in engineering and archaeology. Geophysics, 59(2), 224-232.
  • Hamran, S. E., Paige, D. A., Amundsen, H. E., Berger, T., Brovoll, S., Carter, L., …Øyan, M. J., 2020. Radar imager for Mars’ subsurface experiment—RIMFAX. Space Science Reviews, 216(8), 1-39.
  • Irving J., Knight R., 2006. Numerical modeling of ground-penetrating radar in 2-D using MATLAB. Computers and Geosciences, 2006, 32(9),1247-1258.
  • Kadioglu, S., Ulugergerli, E. U., 2012. Imaging karstic cavities in transparent 3D volume of the GPR data set in Akkopru dam, Mugla, Turkey. Nondestructive Testing and Evaluation, 27(3), 263-271.
  • Kaplanvural, İ., Pekşen, E., Özkap, K., 2018. Volumetric water content estimation of C-30 concrete using GPR. Construction and Building Materials, 166, 141-146.
  • Kurtulmuş T., Drahor M., 2008. Yer radarı modellemesinde fiziksel ve geometrik parametre etkilerinin araştırılması, Yerbilimleri, 29(2), 37-52.
  • Orlando, L., Palladini, L., 2019. Time-lapse laboratory tests to monitor multiple phases of DNAPL in a porous medium. Near Surface Geophysics, 17(1), 55-68.
  • Özkap, K., 2019. Yer radarı yöntemi ile gelişmiş üç boyutlu DNAPL modelleme. Doktora Tezi. Kocaeli Üniversitesi, Türkiye, 599062.
  • Özkap, K., Pekşen, E., Kaplanvural, İ., Çaka, D., 2020. 3D scanner technology implementation to numerical modeling of GPR. Journal of Applied Geophysics, 179, 104086.
  • Roberts, R. L., Daniels, J. J., 1997. Modeling near-field GPR in three dimensions using the FDTD method, 62(4), 114-1126.
  • Schotsmans, E. M., Fletcher, J. N., Denton, J., Janaway, R. C., Wilson, A. S., 2014. Long-term effects of hydrated lime and quicklime on the decay of human remains using pig cadavers as human body analogues: field experiments. Forensic science international, 238, 141-e1.
  • Warren C., Giannopoulos A., 2011. Creating finite-difference time-domain models of commercial ground-penetrating radar antennas using Taguchi’s optimization method. Geophysics, 76(2), G37-G47.
  • Warren C., Giannopoulos A., Giannakis I., 2016. gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar. Computer Physics Communications, 209, 163-170.
  • Yee, K.,1966. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on antennas and propagation, 14(3), 302-307.
  • Zeng, X., McMechan, G. A., Cai, J., Chen, H. W., 1995. Comparison of ray and Fourier methods for modeling monostatic ground-penetrating radar profiles. Geophysics, 60(6), 1727-1734.
  • Zeng, X., McMechan, G. A., 1997. GPR characterization of buried tanks and pipes. Geophysics, 62(3), 797-806.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Kerem Özkap 0000-0002-0456-8176

Ertan Pekşen 0000-0002-3515-1509

Yayımlanma Tarihi 20 Haziran 2021
Gönderilme Tarihi 16 Ocak 2020
Kabul Tarihi 22 Şubat 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Özkap, K., & Pekşen, E. (2021). YER RADARI (GPR) İÇİN 3B SAYISAL MODELLEMEDE FİZİKSEL PARAMETRE ETKİLERİ: DNAPL ÖRNEĞİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 9(2), 476-494. https://doi.org/10.21923/jesd.675785