Araştırma Makalesi
BibTex RIS Kaynak Göster

DÜŞÜK SICAKLIĞA SAHİP JEOTERMAL KUYULARDA GÜÇ ÜRETİMİ EKSERJETİK PERFORMANS ANALİZİ

Yıl 2021, , 574 - 587, 20.06.2021
https://doi.org/10.21923/jesd.717416

Öz

Düşük sıcaklığa sahip bir jeotermal kuyu destekli bir ORC çevrimi incelenmiş ve çalışma akışkanı olarak n-pentane seçilmiştir. N-pentane akışkanının kazanda direkt olarak ısıtılması işlemi için Terminol 72 ısı transfer yağı seçilmiştir. Yağ kazanda ısıtılmadan önce, jeotermal kuyudan alınan düşük kaynak ısısı ile ön ısıtılmaya tutulmuştur. Jeotermal kuyu sıcaklığı 80℃ olan bir kuyu kaynağına Terminol 72 ısı transfer yağı ile sıcaklık artışı sağlanarak bir ORC çevrimi incelenmiştir. Bu çevrimde türbin sıcaklığı 170℃’ye kadar çıkarılmaya çalışılmıştır. Yağ kazanı kapasitesi 4000 kW alınarak, güç üretimi 806.2 kW olarak hesaplanmıştır. N-pentane akışkanın 1000 kPa basınçta türbin girişinde sistem verimi %14 iken buna bağlı olarak sistemin ekserji verimi de aynı basınçta %34 olduğu hesaplamalarda bulunmuştur. Sistemin toplam ekserji yıkımları incelendiğinde kazanda %74, türbinde %16, ısı değiştiricilerinde %9 Terminol ve n- pentane pompasında %1 olarak bulunmuştur. Bu çalışmada düşük sıcaklığa sahip jeotermal kuyuların enerji verimlerinde ısı ön ısıtma işlemiyle veriminde artış olacağı gösterilmiştir.

Kaynakça

  • Aneke, M.C., Menkiti, M.C., 2016. Geothermal: History, Classification, and Utilization for Power Generation. Alternative Energy and Shale Gas Encyclopedia,253-264.
  • Atiz, A., Karakilcik, H., Erden, M., Karakilcik, M., 2019. Investigation energy, exergy and electricity production performance of an integrated system based on a low-temperature geothermal resource and solar energy. Energy Conversion and Management, 195, 798-809.
  • Başoğul, Y., 2019. Environmental assessment of a binary geothermal sourced power plant accompanied by exergy analysis. Energy Conversion and Management, 195, 492-501.
  • Bejan. A, Tsatsaronis. G, Thermal Design and Optimization. John Wiley & Sons, 1996.
  • Benham, P., Arefi, A., Shafii, M.B., 2018. Exergetic and thermoeconomic analysis of a trigeneration system producing electricity, hot water, and fresh water driven by low-temperature geothermal sources. Energy Conversion and Management, 157, 266-276.
  • Bertani, R., 2016. Geothermal power generation in the world 2010–2014 update report. Geothermics, .60, 31-43.
  • Bina, S.M., Jalilinasrabady S., Fujii, H., 2018. Exergoeconomic analysis and optimization of single and double flash cycles for Sabalan geothermal power plant. Geothermics, 72, 74-82.
  • Cetin, T. H., Kanoglu, M., Yanikomer, N., 2019. Cryogenic energy storage powered by geothermal energy. Geothermics, 77, 34-40.
  • Chernikova, E.A., Glukhov, L.M., Krasovskiy, V.G., Kustov, L.M., Vorobyeva, M.G., Koroteev, A., 2015. Ionic liquids as heat transfer fluids: comparison with known systems, possible applications, advantages and disadvantages, Russian Chemical Reviews. 84 (8), 875-890.
  • Cimşit, C., 2019. Jeotermal ısı kaynaklı organic rankine çevriminin (ORC) farklı organic akışkanlar için termodinamik analizi, Isı Bilimi ve Tekniği Dergisi. 39 (2), 169-177.
  • Colonna, P., Casati, E., Trapp, C., Mathijssen, T., Larjola, J., Saaresti, T.T., Uusitalo, A., 2015. Organic Rankine Cycle Power Systems: From the Concept to Current Technology,Applications, and an Outlook to the Future. Journal of Engineering for Gas Turbines and Power, 137 (10), 1-19.
  • Dincer, I., Rosen, M. A. Exergy: Energy, Environment and Sustainable Development. Newnes, 2012.
  • El-Emam, R.S., Dincer, I., 2013. Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine Cycle. Applied Thermal Engineering, 59, 435-444.
  • Ganjehsarabi, H., Gungor, A., Dincer, I., 2012. Exergetic performance analysis of Dora II geothermal power plant in Turkey. Energy, 46, 101-108.
  • Islam, M.M., Hasanuzzaman, M., 2020. Introduction to energy and sustainable development. energy for sustainable development. 1-18.
  • Jubori A.A., Daabo, A., Al-Dadah, R.K., Mahmoud, S., Ennil, A.B., 2016. Development of micro-scale axial and radial turbines for low-temperature heat source driven organic Rankine Cycle. Energy Conversion and Management, 130, 141-155.
  • Kanoglu M., 2002. Exergy analysis of a dual-level binary geothermal power plant. Geothermics 31,709-724.
  • Klein, S. A., Engineering Equation Solver, version 9.022-3D, F-Chart Software, 2011.
  • Koroneos, C., Polyzakis, A., Xydis, G., Stylos, N., Nanaki, E., 2017. Exergy analysis for proposed binary geothermal power plant in Nisyros Island, Greece. Geothermics, 70, 38-46.
  • Leonard, D.M., Michaelides, E.E., Michaelides, D.N., 2020. Energy stroge need for the substitution of fossil power plants with renewables. Renewable Energy, 145, 951-962.
  • Leveni, M., Manfrida, G., Cozzolino, R., Mendecka, B., 2019. Energy and exergy analysis of cold and power production from the geothermal reservoir of Torre Alfina. Energy, 180, 807-818.
  • Nami, H., Nemati, A., Fard, F.J., 2017. Conventional and advanced exergy analysis of a geothermal driven dual fluid organic Rankine cycle (ORC). Applied Thermal Engineering, 122, 59-70.
  • Yilmazoglu Z.M., 2016. Effects of the selection of heat transfer fluid and condenser type on the performance of a solar thermal power plant with technoeconomic approach. Energy Conversion and Management, 111, 271-278.
  • Qiu 2012. Selection of working fluids for micro-CHP systems with ORC. Renewable Energy, 48, 565-570.

POWER GENERATİON EXERGETIC PERFORMANCE ANALYSIS IN GEOTHERMAL WELLS WITH LOW TEMPERATURE

Yıl 2021, , 574 - 587, 20.06.2021
https://doi.org/10.21923/jesd.717416

Öz

An ORC cycle with a low temperature geothermal well support was examined and n-pentane was chosen as the working fluid. Therminol 72 heat transfer oil was chosen for the direct heating of the N-pentane fluid in the boiler. Before the oil was heated in the boiler, it was preheated with low source heat taken from the geothermal well. An ORC cycle was examined by providing a temperature increase with Therminol 72 heat transfer oil to a well source with a geothermal well temperature of 80 ℃. In this cycle, the turbine temperature was tried to be increased up to 170 ℃. By taking the oil boiler capacity 4000 kW, power generation is calculated as 806.2 kW. While the system efficiency of N-pentane fluid at turbine inlet at 1000 kPa pressure is 14%, the exergy efficiency of the system is 34% at the same pressure. When the total exergy destructions of the system were examined, it was found as 74% in the boiler, 16% in the turbine, 9% in the heat exchangers and 1% in the n-pentane pump. In this study, it has been shown that the energy efficiency of low temperature geothermal wells will increase with the heat preheating process.

Kaynakça

  • Aneke, M.C., Menkiti, M.C., 2016. Geothermal: History, Classification, and Utilization for Power Generation. Alternative Energy and Shale Gas Encyclopedia,253-264.
  • Atiz, A., Karakilcik, H., Erden, M., Karakilcik, M., 2019. Investigation energy, exergy and electricity production performance of an integrated system based on a low-temperature geothermal resource and solar energy. Energy Conversion and Management, 195, 798-809.
  • Başoğul, Y., 2019. Environmental assessment of a binary geothermal sourced power plant accompanied by exergy analysis. Energy Conversion and Management, 195, 492-501.
  • Bejan. A, Tsatsaronis. G, Thermal Design and Optimization. John Wiley & Sons, 1996.
  • Benham, P., Arefi, A., Shafii, M.B., 2018. Exergetic and thermoeconomic analysis of a trigeneration system producing electricity, hot water, and fresh water driven by low-temperature geothermal sources. Energy Conversion and Management, 157, 266-276.
  • Bertani, R., 2016. Geothermal power generation in the world 2010–2014 update report. Geothermics, .60, 31-43.
  • Bina, S.M., Jalilinasrabady S., Fujii, H., 2018. Exergoeconomic analysis and optimization of single and double flash cycles for Sabalan geothermal power plant. Geothermics, 72, 74-82.
  • Cetin, T. H., Kanoglu, M., Yanikomer, N., 2019. Cryogenic energy storage powered by geothermal energy. Geothermics, 77, 34-40.
  • Chernikova, E.A., Glukhov, L.M., Krasovskiy, V.G., Kustov, L.M., Vorobyeva, M.G., Koroteev, A., 2015. Ionic liquids as heat transfer fluids: comparison with known systems, possible applications, advantages and disadvantages, Russian Chemical Reviews. 84 (8), 875-890.
  • Cimşit, C., 2019. Jeotermal ısı kaynaklı organic rankine çevriminin (ORC) farklı organic akışkanlar için termodinamik analizi, Isı Bilimi ve Tekniği Dergisi. 39 (2), 169-177.
  • Colonna, P., Casati, E., Trapp, C., Mathijssen, T., Larjola, J., Saaresti, T.T., Uusitalo, A., 2015. Organic Rankine Cycle Power Systems: From the Concept to Current Technology,Applications, and an Outlook to the Future. Journal of Engineering for Gas Turbines and Power, 137 (10), 1-19.
  • Dincer, I., Rosen, M. A. Exergy: Energy, Environment and Sustainable Development. Newnes, 2012.
  • El-Emam, R.S., Dincer, I., 2013. Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine Cycle. Applied Thermal Engineering, 59, 435-444.
  • Ganjehsarabi, H., Gungor, A., Dincer, I., 2012. Exergetic performance analysis of Dora II geothermal power plant in Turkey. Energy, 46, 101-108.
  • Islam, M.M., Hasanuzzaman, M., 2020. Introduction to energy and sustainable development. energy for sustainable development. 1-18.
  • Jubori A.A., Daabo, A., Al-Dadah, R.K., Mahmoud, S., Ennil, A.B., 2016. Development of micro-scale axial and radial turbines for low-temperature heat source driven organic Rankine Cycle. Energy Conversion and Management, 130, 141-155.
  • Kanoglu M., 2002. Exergy analysis of a dual-level binary geothermal power plant. Geothermics 31,709-724.
  • Klein, S. A., Engineering Equation Solver, version 9.022-3D, F-Chart Software, 2011.
  • Koroneos, C., Polyzakis, A., Xydis, G., Stylos, N., Nanaki, E., 2017. Exergy analysis for proposed binary geothermal power plant in Nisyros Island, Greece. Geothermics, 70, 38-46.
  • Leonard, D.M., Michaelides, E.E., Michaelides, D.N., 2020. Energy stroge need for the substitution of fossil power plants with renewables. Renewable Energy, 145, 951-962.
  • Leveni, M., Manfrida, G., Cozzolino, R., Mendecka, B., 2019. Energy and exergy analysis of cold and power production from the geothermal reservoir of Torre Alfina. Energy, 180, 807-818.
  • Nami, H., Nemati, A., Fard, F.J., 2017. Conventional and advanced exergy analysis of a geothermal driven dual fluid organic Rankine cycle (ORC). Applied Thermal Engineering, 122, 59-70.
  • Yilmazoglu Z.M., 2016. Effects of the selection of heat transfer fluid and condenser type on the performance of a solar thermal power plant with technoeconomic approach. Energy Conversion and Management, 111, 271-278.
  • Qiu 2012. Selection of working fluids for micro-CHP systems with ORC. Renewable Energy, 48, 565-570.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Mehmet Altınkaynak 0000-0003-2434-576X

Doğancan Çelik 0000-0002-9492-3062

Yayımlanma Tarihi 20 Haziran 2021
Gönderilme Tarihi 9 Nisan 2020
Kabul Tarihi 22 Aralık 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Altınkaynak, M., & Çelik, D. (2021). DÜŞÜK SICAKLIĞA SAHİP JEOTERMAL KUYULARDA GÜÇ ÜRETİMİ EKSERJETİK PERFORMANS ANALİZİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 9(2), 574-587. https://doi.org/10.21923/jesd.717416