Araştırma Makalesi
BibTex RIS Kaynak Göster

MOTOR YÜKÜNE BAĞLI OLARAK BİYODİZEL YAKITLI BİR DİZEL MOTORUN ENERJİ VE EKSERJİ ANALİZİ SONUÇLARININ DEĞERLENDİRİLMESİ

Yıl 2020, , 833 - 843, 24.09.2020
https://doi.org/10.21923/jesd.775787

Öz

Bu çalışmada, %100 biyodizel yakıtlı dört silindirli bir dizel motor 100 Nm ve tam yükte (294 Nm) deneysel olarak incelenmiştir. Sisteme enerji ve ekserji analizleri uygulanarak sonuçlar termodinamik açıdan detaylı bir şekilde değerlendirilmiştir. Havanın, yakıtın, egzoz gazlarının ve net gücün enerji ve ekserji değerlerinin motor tork artışı ile birlikte arttığı görülmüştür. Tork artışı ile motorun enerji ve ekserji kayıplarının da artarak sistemi olumsuz etkilediği değerlendirilmiştir. 294 Nm’de çalışan motorda biyodizel yakıtının enerji değeri 124,723 kW, ekserji değeri ise 134,09 kW olarak hesaplanmıştır. Dizel motorun 294 Nm yükte enerji kaybı 94,247 kW olarak bulunurken, ekserji kaybı 15,750 kW olarak belirlenmiştir. Motor torkunun artmasıyla sistemin verimi artmıştır ve 294 Nm yükte motorun enerji verimi %33,397 iken, ekserji verimi ise %37,39 olarak hesaplanmıştır.

Kaynakça

  • Aliyy A, Shitanda D, Walker S, Agnew B, Masheiti S, Atan R, 2011. Performance and exhaust emissions of a diesel engine fuelled with croton megalocarpus (musine). Appl Therm Eng. 31:36-41.
  • Chandrasekaran, V., Arthanarisamy, M., Nachiappan, P., Dhanakotti, S., Moorthy, B., 2016. The role of nano additives for biodiesel and diesel blended transportation fuels. Transport. Res. Part D: Transport Environ. 46, 145–156.
  • Çalışkan, H., Tat, M.E., Hepbasli, A., 2010a. A review on exergetic analysis and assessment of various types of engines. Int. J. Exergy 7 (3), 287–310.
  • Çalışkan, H., Tat, M.E., Hepbasli, A., Van Gerpen, J.H., 2010b. Exergy analyses of engines fueled with biodiesel from high-oleic soybeans based on experimental values. Int. J. Exergy 7 (1), 20–36.
  • Çalışkan, H., Mori, K., 2017a. “Environmental, enviroeconomic and enhanced thermodynamic analyses of a diesel engine with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) after treatment systems”, Energy, 128 (2017): 128-144.
  • Çalışkan, H., Mori, K., 2017b. “Thermodynamic, environmental and economic effects of diesel and biodiesel fuels on exhaust emissions and nano-particles of a diesel engine”, Transportation Research Part D, 56 (2017): 203–221.
  • Das, A. K., Hansdah, D., Mohapatra, A. K., & Panda, A. K. (2020). Energy, exergy and emission analysis on a DI single cylinder diesel engine using pyrolytic waste plastic oil diesel blend. Journal of the Energy Institute, 93(4), 1624–1633.
  • Ekici, S., Şöhret, Y., 2020. Isparta Süleyman Demirel Havalimanında Ticari Uçuşlar Kaynaklı Egzoz Emisyonlarının Çevresel Etkileri ve Maliyet Değerlendirmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 8(2), 597–604.
  • Ghadikolaei M. A., Wie, L., Cheung C.S., Yung, K-F. (2019). “Effects of engine load and biodiesel content on performance and regulated and unregulated emissions of a diesel engine using contour-plot map“, Science of the Total Environment, 658 (2019), 1117–1130.
  • Jannatkhah, J., Najafi, B., & Ghaebi, H., 2020. Energy and exergy analysis of combined ORC – ERC system for biodiesel-fed diesel engine waste heat recovery. Energy Conversion and Management, 209, 112658.
  • Kotas, T.J., 1985. The Exergy Method of Thermal Plant Analysis. Butterworths, UK, London.
  • Liu, C., Liu, Z., Tian, J., Xu, Y., Yang, Z., & Wang, P., 2020. Investigations of energy, exergy distribution characteristics of overall working conditions and effect of key boundary parameters on residual energy availability in an automotive turbocharged diesel engine. Applied Thermal Engineering, 174, 115352.
  • Mirbagheri, S. A., Safieddin Ardebili, S. M., & Kiani Deh Kiani, M., 2020. Modeling of the engine performance and exhaust emissions characteristics of a single-cylinder diesel using nano-biochar added into ethanol-biodiesel-diesel blends. Fuel, 278, 118238.
  • Requia, W. J., Mohamed, M., Higgins, C. D., Arain, A., & Ferguson, M., 2018. How clean are electric vehicles? Evidence-based review of the effects of electric mobility on air pollutants, greenhouse gas emissions and human health. Atmospheric Environment, 185, 64–77.
  • Reitz R. D., Duraisamy G., 2015. Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Prog Energy Combust Sci. 46:12–71.
  • Sokhi, R.S., 2011. In: World Atlas of Atmospheric Pollution, first ed. Anthen press, Nova York.
  • Tesfa, B., Gu, F., Mishra, R., Ball, A.D., 2013. LHV predication models and LHV effect on the performance of CI engine running with biodiesel blends. Energy Convers. Manage. 71, 217–226.
  • Venkanna, B.K., Venkataramana Reddy, C., 2012. Direct injection diesel engine performance, emission, and combustion characteristics using diesel fuel, nonedible honne oil methyl ester, and blends with diesel fuel. Int. J. Energy Res. 36, 1247–1261.
  • Yıldız, İ., 2018. Thermodynamic analysis and emission assessment of a diesel engine fueled with various fuels, Yüksek Lisans Tezi, Uşak Üniversitesi, Fen Bilimleri Enstitüsü, Uşak, 39-71.
  • Zhou N., Price L, Yande D, Creyts J, Khanna N, Fridley D., 2019. A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030. Appl Energy. 239:793–819.

ASSESSMENT OF THE ENERGY AND EXERGY ANALYSES RESULTS OF A BIODIESEL FUELED ENGINE DEPENDING ON THE ENGINE LOAD

Yıl 2020, , 833 - 843, 24.09.2020
https://doi.org/10.21923/jesd.775787

Öz

In this study, a four-cylinder diesel engine with %100 biodiesel fuel is investigated at 100Nm and full load. The results are assessed in detail with thermodynamic aspect by applying energy and exergy analyses to the system. It is seen that the energy and exergy rates of air, fuel, exhaust gases and net power increases with engine torque. It is also assessed that the increase in the energy and exergy losses of the engine with increase in torque affects the system negatively. At full load, the biodiesel fuel energy rate is calculated as 124,723, while its exergy rate is 134,09 kW. The energy loss rate of the diesel engine at full load is found as 94,247 kW, its exergy loss is determined as 15,750 kW. The system efficiency is increased with the engine torque, and energy efficiency of the engine at full load is 33,397% while exergy efficiency is calculated as 37,39%.

Kaynakça

  • Aliyy A, Shitanda D, Walker S, Agnew B, Masheiti S, Atan R, 2011. Performance and exhaust emissions of a diesel engine fuelled with croton megalocarpus (musine). Appl Therm Eng. 31:36-41.
  • Chandrasekaran, V., Arthanarisamy, M., Nachiappan, P., Dhanakotti, S., Moorthy, B., 2016. The role of nano additives for biodiesel and diesel blended transportation fuels. Transport. Res. Part D: Transport Environ. 46, 145–156.
  • Çalışkan, H., Tat, M.E., Hepbasli, A., 2010a. A review on exergetic analysis and assessment of various types of engines. Int. J. Exergy 7 (3), 287–310.
  • Çalışkan, H., Tat, M.E., Hepbasli, A., Van Gerpen, J.H., 2010b. Exergy analyses of engines fueled with biodiesel from high-oleic soybeans based on experimental values. Int. J. Exergy 7 (1), 20–36.
  • Çalışkan, H., Mori, K., 2017a. “Environmental, enviroeconomic and enhanced thermodynamic analyses of a diesel engine with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) after treatment systems”, Energy, 128 (2017): 128-144.
  • Çalışkan, H., Mori, K., 2017b. “Thermodynamic, environmental and economic effects of diesel and biodiesel fuels on exhaust emissions and nano-particles of a diesel engine”, Transportation Research Part D, 56 (2017): 203–221.
  • Das, A. K., Hansdah, D., Mohapatra, A. K., & Panda, A. K. (2020). Energy, exergy and emission analysis on a DI single cylinder diesel engine using pyrolytic waste plastic oil diesel blend. Journal of the Energy Institute, 93(4), 1624–1633.
  • Ekici, S., Şöhret, Y., 2020. Isparta Süleyman Demirel Havalimanında Ticari Uçuşlar Kaynaklı Egzoz Emisyonlarının Çevresel Etkileri ve Maliyet Değerlendirmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 8(2), 597–604.
  • Ghadikolaei M. A., Wie, L., Cheung C.S., Yung, K-F. (2019). “Effects of engine load and biodiesel content on performance and regulated and unregulated emissions of a diesel engine using contour-plot map“, Science of the Total Environment, 658 (2019), 1117–1130.
  • Jannatkhah, J., Najafi, B., & Ghaebi, H., 2020. Energy and exergy analysis of combined ORC – ERC system for biodiesel-fed diesel engine waste heat recovery. Energy Conversion and Management, 209, 112658.
  • Kotas, T.J., 1985. The Exergy Method of Thermal Plant Analysis. Butterworths, UK, London.
  • Liu, C., Liu, Z., Tian, J., Xu, Y., Yang, Z., & Wang, P., 2020. Investigations of energy, exergy distribution characteristics of overall working conditions and effect of key boundary parameters on residual energy availability in an automotive turbocharged diesel engine. Applied Thermal Engineering, 174, 115352.
  • Mirbagheri, S. A., Safieddin Ardebili, S. M., & Kiani Deh Kiani, M., 2020. Modeling of the engine performance and exhaust emissions characteristics of a single-cylinder diesel using nano-biochar added into ethanol-biodiesel-diesel blends. Fuel, 278, 118238.
  • Requia, W. J., Mohamed, M., Higgins, C. D., Arain, A., & Ferguson, M., 2018. How clean are electric vehicles? Evidence-based review of the effects of electric mobility on air pollutants, greenhouse gas emissions and human health. Atmospheric Environment, 185, 64–77.
  • Reitz R. D., Duraisamy G., 2015. Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Prog Energy Combust Sci. 46:12–71.
  • Sokhi, R.S., 2011. In: World Atlas of Atmospheric Pollution, first ed. Anthen press, Nova York.
  • Tesfa, B., Gu, F., Mishra, R., Ball, A.D., 2013. LHV predication models and LHV effect on the performance of CI engine running with biodiesel blends. Energy Convers. Manage. 71, 217–226.
  • Venkanna, B.K., Venkataramana Reddy, C., 2012. Direct injection diesel engine performance, emission, and combustion characteristics using diesel fuel, nonedible honne oil methyl ester, and blends with diesel fuel. Int. J. Energy Res. 36, 1247–1261.
  • Yıldız, İ., 2018. Thermodynamic analysis and emission assessment of a diesel engine fueled with various fuels, Yüksek Lisans Tezi, Uşak Üniversitesi, Fen Bilimleri Enstitüsü, Uşak, 39-71.
  • Zhou N., Price L, Yande D, Creyts J, Khanna N, Fridley D., 2019. A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030. Appl Energy. 239:793–819.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

İbrahim Yıldız 0000-0002-1103-2951

Hakan Çalışkan 0000-0002-6571-0965

Yayımlanma Tarihi 24 Eylül 2020
Gönderilme Tarihi 30 Temmuz 2020
Kabul Tarihi 10 Eylül 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Yıldız, İ., & Çalışkan, H. (2020). MOTOR YÜKÜNE BAĞLI OLARAK BİYODİZEL YAKITLI BİR DİZEL MOTORUN ENERJİ VE EKSERJİ ANALİZİ SONUÇLARININ DEĞERLENDİRİLMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(3), 833-843. https://doi.org/10.21923/jesd.775787