Araştırma Makalesi
BibTex RIS Kaynak Göster

DOLU ETKİSİNE MARUZ KALAN ÇELİK ÇATI PANELLERİNİN GÖÇÜK DİRENCİNİN İNCELENMESİ

Yıl 2021, , 1015 - 1029, 21.09.2021
https://doi.org/10.21923/jesd.952121

Öz

Doluya dayanıklı çatı malzemeler üzerinde yapılan araştırmalar, genellikle sigorta şirketleri, teknik ve profesyonel kuruluşlar tarafından yapılmaktadır. Dolu hasarları ile ilgili çalışmalarda, genellikle çelik bilyeler ya da indentörler göçük testleri için kullanılmaktadır. Bir göçük başlatmak için gereken kuvvet ve enerjiyi öngören ampirik formüller son yıllarda verilmiştir. Ancak bu tür testlerin sonuçları ile doğal dolunun çarpması sonucu oluşan darbe etkisi arasında kanıtlanmış bir bağlantı yoktur. Bu çalışma, iki bolümden oluşmaktadır. İlk olarak, yapay dolunun gerilme direncini arttırmak için, demineralize su içerisine polivinil alkol (PVA), sıvı nitrojen ve pamuk gibi katkı maddelerinin eklenmesi ile doğal dolunun hasara neden olan özelliklerini bire bir simüle etmeyi amaçlamaktadır. Çeşitli kalınlığa sahip çatı paneller üzerinde 22 - 43 m/s arasında değişen hızlarda dört farklı yöntem ile yapılan yapay doluların dinamik etkileri değerlendirilmektedir. %12 PVA (Polivinil alkol) yapıştırıcı kullanılarak veya sıvı nitrojen ile üretilen yapay dolular doğal dolu gibi terminal hızlarında çelik plakaya çarptıktan sonra parçalanmadan kalmaktadır. Bu yöntemle üretilen dolular, doğal dolunun yoğunluğunu, homojenliğini ve yüzey sürtünme gibi en önemli karakteristik özelliklerini kapsamaktadır. Son olarak bu çalışmada amaçlanan hedef dinamik darbe etkisinden sonra çelik panellerde oluşan göçük derinliklerini ve göçük çapları arasındaki korelasyonu incelemektir. Sonuçlar, göçük derinliğinin levha kalınlığı, çarpma hızı ve dolu çapı ile doğrusal orantılı olmasına rağmen, göçük çapının sadece dolu çapı arttıkça arttığını göstermektedir. Plakadaki göçük çapının plaka kalınlığından etkilenmediği görülmektedir.

Destekleyen Kurum

BAP ADU

Proje Numarası

MF-17022 ve MF-18004

Teşekkür

Bu çalışma Adnan Menderes Üniversitesi BAP projeleri MF-17022 ve MF-18004 kapsamında desteklenmektedir.

Kaynakça

  • Henri, C., The Sydney hailstorm: The insurance perspective. Australian Journal of Emergency Management, The, 1999. 14(4): p. 16-18.
  • Schuster, S. and R. Blong. Hailstorms and the Estimation of their Impact on Residential Buildings using Radar. in Conference Proceedings, Sixth International Symposium on Hydrological Applications of Weather Radar. 2004.
  • Türk, İ., ve Kuşçu., Ş, İstanbul’da 27 Temmuz 2017’de Gerçekleşen Dolu Fırtınası ile Şiddetli Yağışın Durum Değerlendirmesi.
  • Meteorology, A.B.o., Report by the Director of Meteorology on the Bureau of Meteorology's Forecasting and Warning Performance for the Sydney Hailstorm of 14 April 1999. 1999: Bureau of Meteorology.
  • Schuster, S.S., R.J. Blong, and M.S. Speer, A hail climatology of the greater Sydney area and New South Wales, Australia. International Journal of Climatology: A Journal of the Royal Meteorological Society, 2005. 25(12): p. 1633-1650.
  • Blong, R., Residential building damage and natural perils: Australian examples and issues. Building Research & Information, 2004. 32(5): p. 379-390.
  • Basara, J.B., et al., An analysis of severe hail swaths in the southern plains of the United States. Transactions in GIS, 2007. 11(4): p. 531-554.
  • Leslie, L.M., M. Leplastrier, and B.W. Buckley, Estimating future trends in severe hailstorms over the Sydney Basin: A climate modelling study. Atmospheric Research, 2008. 87(1): p. 37-51.
  • Suppiah, R., et al., Australian climate change projections derived from simulations performed for the IPCC 4th Assessment Report. Australian Meteorological Magazine, 2007. 56(3): p. 131-152.
  • Özşahin, E., Türkiye’de yaşanmiş (1970-2012) doğal afetler üzerine bir değerlendirme. 2. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, 2013.
  • Yilmaz, F.K., Antalya’nin günlük yağiş özellikleri ve şiddetli yağişlarin doğal afetler üzerine etkisi. Sosyal Bilimler Dergisi, 2008. 10(1): p. 20.
  • Liu, H. and K. Miller, Fracture toughness of fresh-water ice. Journal of glaciology, 1979. 22(86): p. 135-143.
  • Sain, T. and R. Narasimhan, Constitutive modeling of ice in the high strain rate regime. International Journal of Solids and Structures, 2011. 48(5): p. 817-827.
  • Crenshaw, V. and J.D. Koontz, Hail: Sizing It Up! Western roofing magazine, 2002: p. 2-7.
  • Brimelow, J.C., T.W. Krauss, and G.W. Reuter, Operational forecasts of maximum hailstone diameter in Mendoza, Argentina. The Journal of Weather Modification, 2002. 34(1): p. 8-17.
  • Uz, M.E., L. Teh, and J. Maguire, Developing Australia’s first hail-proof roofing profiles. Research case study. Open Days’s poster, SBRC, 2014.
  • Uz, M.E., G. Yilmaz, and T. Bircan, Hasarı Gerçekçi Şekilde Simüle Eden Dolu Yapımı. Mühendislik Bilimleri ve Tasarım Dergisi, 2017. 5(2): p. 411-423.
  • Laurie, J., Hail and its effects on buildings. 1960: Council for Scientific and Industrial Research.
  • Swift, J., Simulated hail ice mechanical properties and failure mechanism at quasi-static strain rates. 2013.
  • Luong, S.D., Hail Ice Impact of Lightweight Composite Sandwich Panels. 2014, UC San Diego.
  • Moore, D.M. and A. Wilson, Photovoltaic solar panel resistance to simulated hail. 1978: Department of Energy.
  • Rhymer, J.D., Force criterion prediction of damage for carbon/epoxy composite panels impacted by high velocity ice. 2012, UC San Diego.
  • Ramsay, H., Experimental investigation, development and optimisation of steel roof sheeting against the effect of hail impact. Bachelor Thesis, Bachelor of Engineering, University of Wollongong, 2015.
  • Maguire, J., Experimental determination of the effects of hail impact on steel building envelopes. Civil, Mining and Environmental Engineering, 2014: p. 1-108.
  • Niemeier, B.A. and C.E. Burley, Hailstone response of body panels-real and simulated. 1978, SAE Technical Paper.
  • Chang, D. and R. Khetan, Surface damage of steel, aluminum, and chopped-fiber composite panels due to projectile impact. Journal of reinforced plastics and composites, 1984. 3(3): p. 193-203.
  • Tippmann, J.D., Development of a strain rate sensitive ice material model for hail ice impact simulation. 2011, UC San Diego.
  • Kural M.E. and Secer M., Çati kaplama malzemelerin performanslarinin incelenmesi, 5. Ulusal Çatı & Cephe Sempozyumu, Dokuz Eylül Üniversitesi Mimarlık Fakültesi Tınaztepe yerleşkesi, Izmir, 2010. p. 1-8.

ANALYZING DENT RESISTANCE OF STEEL ROOF PANELS SUBJECTED TO HAIL IMPACTS

Yıl 2021, , 1015 - 1029, 21.09.2021
https://doi.org/10.21923/jesd.952121

Öz

Research on hail-resistant roofing materials is mostly conducted by insurance companies, technical and professional organizations. Steel balls or indenters in the studies concerning hail damage are generally used for dent tests. Empirical formulas predicting the force and energy required to initiate a dent have been given in current years. However, there is no proven correlation between the results of such tests and the impact of natural hail. This study involves two parts. The study firstly aims to simulate the exact damaging properties of natural hail by adding additives such as polyvinyl alcohol (PVA), liquid nitrogen and cotton into demineralized water to increase the tensile strength of artificial hail. The dynamic effects of four different artificial hailstone developed in this study are evaluated at velocities ranging from 22 to 43 m/s on roof panels having various thicknesses. The artificial hailstones produced using 12% PVA (Polyvinyl alcohol) adhesive or liquid nitrogen remain intact after hitting the steel plate at terminal velocities like the same manner of natural hail. The hailstones produced by this method cover the most important characteristic features of natural hail such as density, homogeneity, and surface friction. Finally, the aim of this study is to examine the correlation between the dent depth and dent diameter on the roof panels after the dynamic impact effect of the artificial hail. The results show that although the dent depth is linearly proportional to the plate thickness, impact velocity and the diameter of the hail, the dent diameter only increases as hail diameter increases. It is seen that the dent diameter in the plate is not affected by the plate thickness.

Proje Numarası

MF-17022 ve MF-18004

Kaynakça

  • Henri, C., The Sydney hailstorm: The insurance perspective. Australian Journal of Emergency Management, The, 1999. 14(4): p. 16-18.
  • Schuster, S. and R. Blong. Hailstorms and the Estimation of their Impact on Residential Buildings using Radar. in Conference Proceedings, Sixth International Symposium on Hydrological Applications of Weather Radar. 2004.
  • Türk, İ., ve Kuşçu., Ş, İstanbul’da 27 Temmuz 2017’de Gerçekleşen Dolu Fırtınası ile Şiddetli Yağışın Durum Değerlendirmesi.
  • Meteorology, A.B.o., Report by the Director of Meteorology on the Bureau of Meteorology's Forecasting and Warning Performance for the Sydney Hailstorm of 14 April 1999. 1999: Bureau of Meteorology.
  • Schuster, S.S., R.J. Blong, and M.S. Speer, A hail climatology of the greater Sydney area and New South Wales, Australia. International Journal of Climatology: A Journal of the Royal Meteorological Society, 2005. 25(12): p. 1633-1650.
  • Blong, R., Residential building damage and natural perils: Australian examples and issues. Building Research & Information, 2004. 32(5): p. 379-390.
  • Basara, J.B., et al., An analysis of severe hail swaths in the southern plains of the United States. Transactions in GIS, 2007. 11(4): p. 531-554.
  • Leslie, L.M., M. Leplastrier, and B.W. Buckley, Estimating future trends in severe hailstorms over the Sydney Basin: A climate modelling study. Atmospheric Research, 2008. 87(1): p. 37-51.
  • Suppiah, R., et al., Australian climate change projections derived from simulations performed for the IPCC 4th Assessment Report. Australian Meteorological Magazine, 2007. 56(3): p. 131-152.
  • Özşahin, E., Türkiye’de yaşanmiş (1970-2012) doğal afetler üzerine bir değerlendirme. 2. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, 2013.
  • Yilmaz, F.K., Antalya’nin günlük yağiş özellikleri ve şiddetli yağişlarin doğal afetler üzerine etkisi. Sosyal Bilimler Dergisi, 2008. 10(1): p. 20.
  • Liu, H. and K. Miller, Fracture toughness of fresh-water ice. Journal of glaciology, 1979. 22(86): p. 135-143.
  • Sain, T. and R. Narasimhan, Constitutive modeling of ice in the high strain rate regime. International Journal of Solids and Structures, 2011. 48(5): p. 817-827.
  • Crenshaw, V. and J.D. Koontz, Hail: Sizing It Up! Western roofing magazine, 2002: p. 2-7.
  • Brimelow, J.C., T.W. Krauss, and G.W. Reuter, Operational forecasts of maximum hailstone diameter in Mendoza, Argentina. The Journal of Weather Modification, 2002. 34(1): p. 8-17.
  • Uz, M.E., L. Teh, and J. Maguire, Developing Australia’s first hail-proof roofing profiles. Research case study. Open Days’s poster, SBRC, 2014.
  • Uz, M.E., G. Yilmaz, and T. Bircan, Hasarı Gerçekçi Şekilde Simüle Eden Dolu Yapımı. Mühendislik Bilimleri ve Tasarım Dergisi, 2017. 5(2): p. 411-423.
  • Laurie, J., Hail and its effects on buildings. 1960: Council for Scientific and Industrial Research.
  • Swift, J., Simulated hail ice mechanical properties and failure mechanism at quasi-static strain rates. 2013.
  • Luong, S.D., Hail Ice Impact of Lightweight Composite Sandwich Panels. 2014, UC San Diego.
  • Moore, D.M. and A. Wilson, Photovoltaic solar panel resistance to simulated hail. 1978: Department of Energy.
  • Rhymer, J.D., Force criterion prediction of damage for carbon/epoxy composite panels impacted by high velocity ice. 2012, UC San Diego.
  • Ramsay, H., Experimental investigation, development and optimisation of steel roof sheeting against the effect of hail impact. Bachelor Thesis, Bachelor of Engineering, University of Wollongong, 2015.
  • Maguire, J., Experimental determination of the effects of hail impact on steel building envelopes. Civil, Mining and Environmental Engineering, 2014: p. 1-108.
  • Niemeier, B.A. and C.E. Burley, Hailstone response of body panels-real and simulated. 1978, SAE Technical Paper.
  • Chang, D. and R. Khetan, Surface damage of steel, aluminum, and chopped-fiber composite panels due to projectile impact. Journal of reinforced plastics and composites, 1984. 3(3): p. 193-203.
  • Tippmann, J.D., Development of a strain rate sensitive ice material model for hail ice impact simulation. 2011, UC San Diego.
  • Kural M.E. and Secer M., Çati kaplama malzemelerin performanslarinin incelenmesi, 5. Ulusal Çatı & Cephe Sempozyumu, Dokuz Eylül Üniversitesi Mimarlık Fakültesi Tınaztepe yerleşkesi, Izmir, 2010. p. 1-8.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Mehmet Eren Uz 0000-0002-4466-5536

Mohammad Dawood Sızar 0000-0003-3165-2346

Proje Numarası MF-17022 ve MF-18004
Yayımlanma Tarihi 21 Eylül 2021
Gönderilme Tarihi 14 Haziran 2021
Kabul Tarihi 26 Ağustos 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Uz, M. E., & Sızar, M. D. (2021). DOLU ETKİSİNE MARUZ KALAN ÇELİK ÇATI PANELLERİNİN GÖÇÜK DİRENCİNİN İNCELENMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 9(3), 1015-1029. https://doi.org/10.21923/jesd.952121