Su yapılarının projelendirilmesinde, akım miktarı ile ilgili bilgilere ihtiyaç duyulur. Akım miktarının gelecekte, belli bir tarihte ne olacağının tahmini, taşkın kontrolü amaçlı haznelerin işletilmesinde, akarsudaki su potansiyelinin belirlenmesinde, bir hidroelektrik santral için kurak dönemlerde üretimin nasıl etkileneceğinin bilinmesinde, içme ve sulama suyunun dağıtımında ve akarsulardaki ulaşımın planlanmasında önem taşımaktadır. Akım tahminin de kullanılan metotlar, kısa süreli akım tahmini için, yağış akış modelleri ya da akım öteleme modelleri; uzun süreli akım tahmini için ise indis değişkeni modelleri, su bütçesi modelleri, yağış akış modelleri ve zaman serisi modelleri olarak sayılabilmektedir. Çalışmada Akdeniz Bölgesi içerisinde yer alan, Alara Çayına ait akımların tahmininde mevcut tahmin metotlarına alternatif olarak, son zamanlarda hidrolojik problemlerin çözümünde yaygın kullanıma sahip olan yapay zeka yöntemlerden yapay sinir ağları (YSA) ve adaptif ağ temelli bulanık çıkarım sistemleri (ANFIS) yöntemleri kullanılmıştır. Yapay zeka yöntemlerde kullanılan akım miktarları 9-17 nolu akım gözlem istasyonuna ait aylık ortalama akım değerleridir. Zaman serileri akım tahmini çalışması sonucunda Markov modelleri ile mertebesi belirlenen Alara Çayı için, yapay zeka yöntemlerle akım tahmin yaklaşımında girdi değişkenleri olarak önceki yılların akım değerleri ve periyodiklik için de cos(2πi/12), sin(2πi/12) değerleri seçilmişlerdir. Karşılaştırma sonucunda, YSA ile elde edilen tahminlerin geçmiş akım verileri ile daha uyumlu sonuçlar verdiği görülmüştür.
Yapay Zeka Sistemler Yapay Sinir Ağları Adaptif Ağ Temelli Bulanık Çıkarım Sistemleri
For designing of water resources structures, information interesting in volume and rate of water is needed. Forecasting of flow in future is important for operating of flood control reservoirs, determining of potential flow in stream, amount of flow in drought periods evaluating of electric generation in a power plant, delivering of domestic and irrigation water, and planning of navigation in streams. A number of methods are used in flow forecasting. Predictionrunoff models or flood routing models are used for short time forecasting whereas water budget models, flood routing models and time series models are used for long time periods. In this study, for flow prediction of Alara Stream in Mediterranean Region artificial intelligent models used in solving of hydrological problems recently are developed as alternative conventional methods. Artificial Neural Networks (ANN) and Adaptive Neural Based Inference Systems (ANFIS) are selected for modeling. Monthly mean flow data from the 9–17 station on the Alara Stream is used for artificial intelligence models. After determining model degree using Markov models, the input layer consisted of previous flows and cos (2πi/12), sin (2πi/12) (i =1, 2, ..., 12) for the effect of monthly periodicity, and the output layer contained a single flow value for time t for artificial models. When predicting results are compared for two modeling techniques, both low and high flows are better predicted by ANN than ANFIS.
Artificial Intelligence Systems Artificial Neural Networks Adaptive Neural Based Inference Systems Markov Models Flow Predicting
Birincil Dil | İngilizce |
---|---|
Konular | Mühendislik |
Bölüm | İnşaat Mühendisliği |
Yazarlar | |
Yayımlanma Tarihi | 1 Mart 2010 |
Gönderilme Tarihi | 21 Aralık 2009 |
Yayımlandığı Sayı | Yıl 2010 Cilt: 1 Sayı: 1 |