Araştırma Makalesi
BibTex RIS Kaynak Göster

TEMPORAL VARIATION OF PM10 AND SO2 CONCENTRATIONS OF AKSARAY ATMOSPHERE: CONDITIONAL BIVARIATE PROBABILITY FUNCTION AND K-MEANS CLUSTERING

Yıl 2018, Cilt: 6 Sayı: 3, 471 - 478, 28.09.2018
https://doi.org/10.21923/jesd.426741

Öz










In this study, PM10
and SO2 data of Aksaray Province were evaluated. PM10 and
SO2 data monitored by the Ministry of Environment and Urban Planning
were used to determine the frameworks for the impact of these pollutant
sources. A comparison study was conducted with the data belonging to Konya,
Ankara, Nevşehir and Niğde. As a result, it was concluded that the PM10
data was recorded higher than 50 μgm-3 which was stated as limit
value at regulations. PM10 values were recorded higher in the summer
season and lower in the winter. SO2 values also detected high during
the winter months due to domestic heating and there was a decrease in
concentration in summer. PM10 concentrations higher than 150 μgm-3
were transported with the wind speeds and above 6 ms-1 from the side
of the city center and Ankara-Adana highway. The results indicate that SO2
emissions originate from the industrial zone located near the station. At a
wind speed of 2 ms-1 or less, there is an SO2 transport
of 9 μgm-3 or higher. 5 clusters have been determined for PM10
(1 and 2- suburban emission, 3-traffic emission, 4-urban emission and
5-industrial emission) and 4 clusters for SO2 number have been set
(1- suburban emission, 2- industrial emission, 3- urban emission and 4- mix of
urban and suburban emission).

Kaynakça

  • Aksaray Organize Sanayi Müdürlüğü, 2016
  • Ashbaugh, L. L., Malm, W. C., & Sadeh, W. Z. 1985. A residence time probability analysis of sulfur concentrations at Grand Canyon National Park. Atmospheric Environment (1967), 19(8), 1263-1270.
  • Carlson, R.W., 1979. Reduction in the photosynthetic rate of Acer, quercus and Fraxinus species caused by sulphur dioxide and ozone. Environmental Pollution (1970) 18 (2), 159–170.
  • Carmichael, G.R., Streets, D.G., Calori, G., Amann, M., Jacobson, M.Z., Hansen, J., Ueda, H., 2002. Changing trends in sulfur emissions in Asia: implications for acid deposition, air pollution and climate. Environmental Science & Technology 36 (22), 4707–4713
  • Everitt, B. S., Landau, S., Leese, M., & Stahl, D. 2011. Cluster analysis: Wiley series in probability and statistics.
  • Garg, A., Shukla, P.R., Kapshe, M., 2006. The sectoral trends of multigas emissions inventory of India. Atmospheric Environment 40 (24), 4608–4620
  • Gramsch, E., Cereceda-Balic, F., Oyola, P., & Von Baer, D. 2006. Examination of pollution trends in Santiago de Chile with cluster analysis of PM10 and ozone data. Atmospheric environment, 40(28), 5464-5475
  • Kappos, A. D., Bruckmann, P., Eikmann, T., Englert, N., Heinrich, U., Höppe, P., ... & Rombout, P. (2004). Health effects of particles in ambient air. International journal of hygiene and environmental health, 207(4), 399-407.
  • Lee, E.H., Pausch, R.C., Rowland, R.A., Mulchi, C.L., Rudorff, B.F.T., 1997. Responses of field-grown soybean (cv. Essex) to elevated SO2 under two atmospheric CO2 concentrations. Environmental and Experimental Botany 37 (2–3), 85–93.
  • Pereira, M.C., Alvim-Ferraz, M.C.M., Santos, R.C., 2005. Relevant aspects of air quality in Oporto (Portugal): PM10 and O3. Environmental Monitoring and Assessment 101, 203–221.
  • Pereira, M.C., Santos, R.C., Alvim-Ferraz, M.C.M., 2007. Air quality improvements using European environment policies: a case study of SO2 in a coastal region in Portugal. Journal of Toxicology and Environmental Health, Part A 70, 1–5
  • Reddy, M.S., Venkataraman, C., 2002. Inventory of aerosol and sulphur dioxide emissions from India: I-Fossil fuel combustion. Atmospheric Environment 36 (4), 677–697
  • Teixeira, Elba Calesso, Agudelo-Castaneda, Dayana M,, Fachel, Jandyra Maria, Guimaraes, Leal, Karen Alam, de Oliveira Garcia, Karine, Wiegand, Flavio, 2012. “Source identification and seasonal variation of polycyclic aromatic hydrocarbons associated with atmospheric fine and coarse particles in the Metropolitan Area of Porto Alegre, RS, Braz”, Atmospheric Research, 118, 390-403
  • Uria-Tellaetxe, I., & Carslaw, D. C. 2014. Conditional bivariate probability function for source identification. Environmental modelling & software, 59, 1-9.
  • World Health Organization (WHO), 2000. Air quality Guidelines for Europe, second ed. WHO Regional Office, Copenhagen

AKSARAY KENTİNİN PM10 VE SO2 KONSANTRASYONLARININ ZAMANSAL DEĞİŞİMİ: KOŞULLU İKİ DEĞİŞKENLİ OLASILIK FONKSİYONU VE K-MEANS KÜMELEME

Yıl 2018, Cilt: 6 Sayı: 3, 471 - 478, 28.09.2018
https://doi.org/10.21923/jesd.426741

Öz

Bu çalışmada Aksaray İli’nin PM10 ve SO2 verileri değerlendirilmiştir. Bu kirletici kaynaklarının etki çerçevelerini belirlemek için Çevre ve Şehircilik Bakanlığı tarafından izlemesi yapılan PM10 ve SO2 verileri kullanılmıştır. Aksaray iline ait verilerle birlikte sınır iller olan Konya, Ankara, Nevşehir ve Niğde illerine ait veriler ile de karşılaştırma çalışılması yapılmıştır. Sonuç olarak kıyaslama yapılan tüm iller için PM10 verilerinin yönetmeliklerde belirtilen 50 µgm-3’den yüksek kaydedildiği sonucuna varılmıştır. PM10 değerlerinin yaz aylarında daha yüksek kaydedildiği, kış aylarında ise ortalama değerlerde düşüş olduğu görülmüştür. SO2 değerlerinde de kış aylarında evsel ısınmadan dolayı artış kaydedilirken yaz aylarında konsantrasyonunda bir düşüş saptanmıştır.150 µgm-3 ve üstü PM10 emisyonlarının 6 ms-1’den yüksek rüzgâr hızı ile istasyonun doğusunda yer alan Ankara-Adana yolu ve şehir merkezinden geldiği sonucuna varılmıştır. SO2 emisyonları için de 2 ms-1 ve daha düşük rüzgâr hızı ile 9 µgm-3 ve üstü bir taşınımın sanayi bölgesinden kaynaklandığı belirlenmiştir. PM10 için 5 kümeli sonuç (1 ve 2 - şehrin arka plan emisyonu, 3-trafik emisyonu, 4- şehir merkezi emisyonu ve 5 - sanayi emisyonu) ve SO2 için de 4 küme sayısı (1 - şehrin arka plan emisyonu, 2 - sanayi bölgesi emisyonu, 3 - şehir merkezi emisyonu, 4 - şehir merkezi ve arka plan emisyonları) belirlenmiştir.

Kaynakça

  • Aksaray Organize Sanayi Müdürlüğü, 2016
  • Ashbaugh, L. L., Malm, W. C., & Sadeh, W. Z. 1985. A residence time probability analysis of sulfur concentrations at Grand Canyon National Park. Atmospheric Environment (1967), 19(8), 1263-1270.
  • Carlson, R.W., 1979. Reduction in the photosynthetic rate of Acer, quercus and Fraxinus species caused by sulphur dioxide and ozone. Environmental Pollution (1970) 18 (2), 159–170.
  • Carmichael, G.R., Streets, D.G., Calori, G., Amann, M., Jacobson, M.Z., Hansen, J., Ueda, H., 2002. Changing trends in sulfur emissions in Asia: implications for acid deposition, air pollution and climate. Environmental Science & Technology 36 (22), 4707–4713
  • Everitt, B. S., Landau, S., Leese, M., & Stahl, D. 2011. Cluster analysis: Wiley series in probability and statistics.
  • Garg, A., Shukla, P.R., Kapshe, M., 2006. The sectoral trends of multigas emissions inventory of India. Atmospheric Environment 40 (24), 4608–4620
  • Gramsch, E., Cereceda-Balic, F., Oyola, P., & Von Baer, D. 2006. Examination of pollution trends in Santiago de Chile with cluster analysis of PM10 and ozone data. Atmospheric environment, 40(28), 5464-5475
  • Kappos, A. D., Bruckmann, P., Eikmann, T., Englert, N., Heinrich, U., Höppe, P., ... & Rombout, P. (2004). Health effects of particles in ambient air. International journal of hygiene and environmental health, 207(4), 399-407.
  • Lee, E.H., Pausch, R.C., Rowland, R.A., Mulchi, C.L., Rudorff, B.F.T., 1997. Responses of field-grown soybean (cv. Essex) to elevated SO2 under two atmospheric CO2 concentrations. Environmental and Experimental Botany 37 (2–3), 85–93.
  • Pereira, M.C., Alvim-Ferraz, M.C.M., Santos, R.C., 2005. Relevant aspects of air quality in Oporto (Portugal): PM10 and O3. Environmental Monitoring and Assessment 101, 203–221.
  • Pereira, M.C., Santos, R.C., Alvim-Ferraz, M.C.M., 2007. Air quality improvements using European environment policies: a case study of SO2 in a coastal region in Portugal. Journal of Toxicology and Environmental Health, Part A 70, 1–5
  • Reddy, M.S., Venkataraman, C., 2002. Inventory of aerosol and sulphur dioxide emissions from India: I-Fossil fuel combustion. Atmospheric Environment 36 (4), 677–697
  • Teixeira, Elba Calesso, Agudelo-Castaneda, Dayana M,, Fachel, Jandyra Maria, Guimaraes, Leal, Karen Alam, de Oliveira Garcia, Karine, Wiegand, Flavio, 2012. “Source identification and seasonal variation of polycyclic aromatic hydrocarbons associated with atmospheric fine and coarse particles in the Metropolitan Area of Porto Alegre, RS, Braz”, Atmospheric Research, 118, 390-403
  • Uria-Tellaetxe, I., & Carslaw, D. C. 2014. Conditional bivariate probability function for source identification. Environmental modelling & software, 59, 1-9.
  • World Health Organization (WHO), 2000. Air quality Guidelines for Europe, second ed. WHO Regional Office, Copenhagen
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Ebru Koçak 0000-0002-6419-2318

Yayımlanma Tarihi 28 Eylül 2018
Gönderilme Tarihi 24 Mayıs 2018
Kabul Tarihi 12 Eylül 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 3

Kaynak Göster

APA Koçak, E. (2018). AKSARAY KENTİNİN PM10 VE SO2 KONSANTRASYONLARININ ZAMANSAL DEĞİŞİMİ: KOŞULLU İKİ DEĞİŞKENLİ OLASILIK FONKSİYONU VE K-MEANS KÜMELEME. Mühendislik Bilimleri Ve Tasarım Dergisi, 6(3), 471-478. https://doi.org/10.21923/jesd.426741