Araştırma Makalesi
BibTex RIS Kaynak Göster

PARÇACIK BOYUTUNA BAĞLI FÜME SİLİKA BAZLI KESME İLE KALINLAŞAN AKIŞKANLARIN REOLOJİK DAVRANIŞI

Yıl 2018, Cilt: 6 Sayı: 4, 665 - 671, 11.12.2018
https://doi.org/10.21923/jesd.447357

Öz

Üç farklı ortalama parçacık boyutuna sahip (8, 12 ve 18nm) füme
silikaların PEG200 taban akışkanına dört farklı kütlesel fraksiyon aralığında
(%5, 10 ,15 ve 20) dağıtılması ile elde edilen süspansiyon akışkanların
reolojik (viskozite, kritik kesme hızı, depolama modülü ve kayıp modülleri)
davranışları incelenmiştir. Doğrusal ve doğrusal olmayan viskoelastik ölçümlerden
elde edilen bulgular da, kütlece %5 fraksiyonda hazırlanan süspansiyonların Newton
kuralına uyduğunu ayrıca artan fraksiyona bağlı olarak viskoziteninde arttığı
gözlemlenmiştir. Düşük kütlesel fraksiyonlarda nanoparçacık boyutu ile kaymadan
dolayı viskozite kalınlaşmasına etki ettiği gözlemlenirken, kütlesel fraksiyon
artışı ile bu etkinin azaldığı da görülmüştür. Ayrıca tüm parçacık boyutu ve fraksiyonlarda
depolama ve kayıp modulüslerinin salınım gerilimleri incelendiğinde
süspansiyonların viskoz davranış özelliği göstermiştir. Bu bulgular daha güçlü
ve hafif kesme ile kalınlaşan süspansiyonların hazırlanmasını ve balistik
esaslı çalışmalarda kullanılması açısından önem arz etmektedir. 

Kaynakça

  • Bossis, G., Brady, J.F. 1989. The rheology of Brownian suspensions, The Journal of Chemical Physics, 91, 1866-1874.
  • Boyle, J., Manas-Zloczower, I., Feke, D.L. 2004. Influence of Particle Morphology and Flow Conditions on the Dispersion Behavior of Fumed Silica in Silicone Polymers, Part. Part. Syst. Charact., 21, 205-212.
  • Cao, S., Chen, Q., Wang, Y., Xuan, S., Jiang, W., Gong, X. 2017. High strain-rate dynamic mechanical properties of Kevlar fabrics impregnated with shear thickening fluid, Composites: Part A, 100, 161-169.
  • Choi, U.S. 2009. Nanofluids: from vision to reality through research, Journal of Heat Transfer, 131, 1-9.
  • Crawford, N.C., Popp, L.B., Johns, K.E., Caire, L.M., Peterson, B.N., Liberatore, M.W. 2013. Shear thickening of corn starch suspensions: Does concentration matter?, Journal of Colloid and Interface Science, 396, 83–89.
  • Decker, M.J., Halbach, C.J., Nam, C.H., Wagner, N.J., Wetze, E.D. 2007. Stab resistance of shear thickening fluid (STF)-treated fabrics. Compos. Sci. Techn., 67, 565–578.
  • Ding, J., Li, W., Shen, S.Z. 2011. Research and applications of shear thickening fluids, Recent Patents Mater Sci, 4, 43-49.
  • Duvarcı Ö. Ç. 2009. Rheological Behavior Of Nanocrystalline / Submicron Ceramic Powder Dispersions. Doktora Tezi, İzmir Yüksek Teknolojisi, Türkiye.
  • Fischer, C., Braun, S.A., Bourban, P.E., Michaud, V., Plummer, C.J.G., Manson, J.A.E. 2016. Dynamic properties of sandwich structures with integrated shear-thickening fluids, Smart Materials and Structures, 15, 1467–1475.
  • Genovese, D.B. 2012. Shear rheology of hard-sphere, dispersed, and aggregated suspensions, and filler-matrix composites. Advances in Colloid and Interface Science, 171–172, 1–16.
  • Gurgen, S., Kushan, M.C. 2017. The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives, Composites Part A: Applied Science and Manufacturing, 94, 50-60.
  • Gurgen, S., Kushan, M.C., Li, W. 2016. The effect of carbide particle additives on rheology of shear thickening fluids, Korea-Australia Rheology Journal, 28(2), 121-128.
  • Gurgen, S., Kushan, M.C., Li, W. 2017. Shear thickening fluids in protective applications: A review, Progress in Polymer Science, 75, 48-72.
  • Gurgen, S., Li, W., Kushan, M.C. 2016. The rheology of shear thickening fluids with various ceramic particle additives, Materials & Design, 104, 312-319.
  • Huang, W., Wu, Y., Qiu, L., Dong, C., Ding, J., Li, D. 2015. Tuning Rheological Performance of Silica Concentrated Shear Thickening Fluid by Using Graphene Oxide, Advances in Condensed Matter Physics, 734250, 1-5.
  • Jiang, T., Zukoski, C.F. 2012. Role of Particle Size and Polymer Length in Rheology of Colloid−Polymer Composites, Macromolecules, 45, 9791-9803.
  • Kawaguchi, M. 2017. Dispersion stabilities and rheological properties of fumed silica suspensions, Journal of Dispersion Science and Technology, 38(5), 642-660.
  • Khandavalli, S., Rothstein,J.P. 2014. Extension rheology of shear-thickening fumed silica nanoparticles dispersed in an aqueous polyethylene oxide solution, J. Rheol., 58(2), 411-431.
  • Lee, Y.S., Wetzel, E.D., Wagner, N.J. 2003. The ballistic impact characteristics of Kevlar woven fabrics impregnated with a colloidal shear thickening fluid, Journal of Materials Science, 38, 2825-2833.
  • Maranzano, B.J., Wagner, N.J. 2001. The effects of particle size on reversible shear thickening of concentrated colloidal suspensions. J Chem Phys, 114, 10514-10527.
  • Moriana, A.D., Tian, T., Sencadas, V., Li, W. 2016, Comparison of rheological behaviors with fumed silica-based shear thickening fluids, Korea-Australia Rheology Journal, 28(3), 197-205.
  • Morrison, F.A. 2001. Understanding Rheology, Oxford University Press, New York.
  • Peter, O.E., Ouellet, S., Loiseau, J., Frost, D.L., Higgins, A.J. 2015. A comparison of the ballistic performance of shear thickening fluids based on particle strength and volume fraction, International Journal of Impact Engineering, 85, 83-96.
  • Sacca, A., Pedicini, R., Carbone, A., Gatto, I., Passalacqua, E. 2007. Comparative investigation on nano-sized SiO2 as a filler for Proton Exchange Membranes (PEM) Fuel Cells, ECS Transactions, 11, 357-366.
  • Warren, J., Offenberger, S., Toghiani, H., Pittman, C.U., Lacy, T.E., Kundu, S. 2015. Effect of Temperature on the Shear-Thickening Behavior of Fumed Silica Suspensions, ACS Applied Materials & Interfaces, 7, 18650-18661.
  • Wong, K.V., Leon, O.D. 2010. Applications of Nanofluids: Current and Future, Adv. Mech. Eng., 2, 1-11.
  • Yıldız, S. 2013. Synthesis and Rheological Behavior of Shear Thickening Fluid for Liquid Armor Applications. Doktora Tezi, İzmir Yüksek Teknolojisi, Türkiye.
  • Zhang, X.Z., Li, W.H., Gong, X.L. 2008. The rheology of shear thickening fluid and the dynamic performance of an STF-filled damper, Smart Materials and Structures, 17, 1-7.

RHEOLOGICAL BEHAVIOR OF PARTICLE SIZE DEPENDENT FUMED SILICA BASED SHEAR THICKENING FLUIDS

Yıl 2018, Cilt: 6 Sayı: 4, 665 - 671, 11.12.2018
https://doi.org/10.21923/jesd.447357

Öz










The rheological properties (viscosity, critical shear
rate, storage modulus and loss modulus) of suspension fluids produced by
dispersing fume silicates with three different mean particle sizes (8, 12 and
18 nm) in PEG200 base fluid at four different fractional ranges (5, 10, 15 and 20%)
were investigated. In the findings obtained from linear and nonlinear
viscoelastic measurements, it was observed that the suspensions prepared in 5%
fraction increased in viscosity due to increasing fraction. It is observed that
in low mass fractions the nanoparticle size affects the viscosity thickening
due to the slip, this effect leads to be reduced by the increase of the mass
fraction. Furthermore, when the storage modulus / loss modulus vs strain in all
particle sizes and fractions were examined, it was observed that for all
suspensions have viscous behavior characteristics. This findings are important
for the preparation of suspensions with stronger and light-weight shear
thickening fluids and for use in ballistic related works. 

Kaynakça

  • Bossis, G., Brady, J.F. 1989. The rheology of Brownian suspensions, The Journal of Chemical Physics, 91, 1866-1874.
  • Boyle, J., Manas-Zloczower, I., Feke, D.L. 2004. Influence of Particle Morphology and Flow Conditions on the Dispersion Behavior of Fumed Silica in Silicone Polymers, Part. Part. Syst. Charact., 21, 205-212.
  • Cao, S., Chen, Q., Wang, Y., Xuan, S., Jiang, W., Gong, X. 2017. High strain-rate dynamic mechanical properties of Kevlar fabrics impregnated with shear thickening fluid, Composites: Part A, 100, 161-169.
  • Choi, U.S. 2009. Nanofluids: from vision to reality through research, Journal of Heat Transfer, 131, 1-9.
  • Crawford, N.C., Popp, L.B., Johns, K.E., Caire, L.M., Peterson, B.N., Liberatore, M.W. 2013. Shear thickening of corn starch suspensions: Does concentration matter?, Journal of Colloid and Interface Science, 396, 83–89.
  • Decker, M.J., Halbach, C.J., Nam, C.H., Wagner, N.J., Wetze, E.D. 2007. Stab resistance of shear thickening fluid (STF)-treated fabrics. Compos. Sci. Techn., 67, 565–578.
  • Ding, J., Li, W., Shen, S.Z. 2011. Research and applications of shear thickening fluids, Recent Patents Mater Sci, 4, 43-49.
  • Duvarcı Ö. Ç. 2009. Rheological Behavior Of Nanocrystalline / Submicron Ceramic Powder Dispersions. Doktora Tezi, İzmir Yüksek Teknolojisi, Türkiye.
  • Fischer, C., Braun, S.A., Bourban, P.E., Michaud, V., Plummer, C.J.G., Manson, J.A.E. 2016. Dynamic properties of sandwich structures with integrated shear-thickening fluids, Smart Materials and Structures, 15, 1467–1475.
  • Genovese, D.B. 2012. Shear rheology of hard-sphere, dispersed, and aggregated suspensions, and filler-matrix composites. Advances in Colloid and Interface Science, 171–172, 1–16.
  • Gurgen, S., Kushan, M.C. 2017. The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives, Composites Part A: Applied Science and Manufacturing, 94, 50-60.
  • Gurgen, S., Kushan, M.C., Li, W. 2016. The effect of carbide particle additives on rheology of shear thickening fluids, Korea-Australia Rheology Journal, 28(2), 121-128.
  • Gurgen, S., Kushan, M.C., Li, W. 2017. Shear thickening fluids in protective applications: A review, Progress in Polymer Science, 75, 48-72.
  • Gurgen, S., Li, W., Kushan, M.C. 2016. The rheology of shear thickening fluids with various ceramic particle additives, Materials & Design, 104, 312-319.
  • Huang, W., Wu, Y., Qiu, L., Dong, C., Ding, J., Li, D. 2015. Tuning Rheological Performance of Silica Concentrated Shear Thickening Fluid by Using Graphene Oxide, Advances in Condensed Matter Physics, 734250, 1-5.
  • Jiang, T., Zukoski, C.F. 2012. Role of Particle Size and Polymer Length in Rheology of Colloid−Polymer Composites, Macromolecules, 45, 9791-9803.
  • Kawaguchi, M. 2017. Dispersion stabilities and rheological properties of fumed silica suspensions, Journal of Dispersion Science and Technology, 38(5), 642-660.
  • Khandavalli, S., Rothstein,J.P. 2014. Extension rheology of shear-thickening fumed silica nanoparticles dispersed in an aqueous polyethylene oxide solution, J. Rheol., 58(2), 411-431.
  • Lee, Y.S., Wetzel, E.D., Wagner, N.J. 2003. The ballistic impact characteristics of Kevlar woven fabrics impregnated with a colloidal shear thickening fluid, Journal of Materials Science, 38, 2825-2833.
  • Maranzano, B.J., Wagner, N.J. 2001. The effects of particle size on reversible shear thickening of concentrated colloidal suspensions. J Chem Phys, 114, 10514-10527.
  • Moriana, A.D., Tian, T., Sencadas, V., Li, W. 2016, Comparison of rheological behaviors with fumed silica-based shear thickening fluids, Korea-Australia Rheology Journal, 28(3), 197-205.
  • Morrison, F.A. 2001. Understanding Rheology, Oxford University Press, New York.
  • Peter, O.E., Ouellet, S., Loiseau, J., Frost, D.L., Higgins, A.J. 2015. A comparison of the ballistic performance of shear thickening fluids based on particle strength and volume fraction, International Journal of Impact Engineering, 85, 83-96.
  • Sacca, A., Pedicini, R., Carbone, A., Gatto, I., Passalacqua, E. 2007. Comparative investigation on nano-sized SiO2 as a filler for Proton Exchange Membranes (PEM) Fuel Cells, ECS Transactions, 11, 357-366.
  • Warren, J., Offenberger, S., Toghiani, H., Pittman, C.U., Lacy, T.E., Kundu, S. 2015. Effect of Temperature on the Shear-Thickening Behavior of Fumed Silica Suspensions, ACS Applied Materials & Interfaces, 7, 18650-18661.
  • Wong, K.V., Leon, O.D. 2010. Applications of Nanofluids: Current and Future, Adv. Mech. Eng., 2, 1-11.
  • Yıldız, S. 2013. Synthesis and Rheological Behavior of Shear Thickening Fluid for Liquid Armor Applications. Doktora Tezi, İzmir Yüksek Teknolojisi, Türkiye.
  • Zhang, X.Z., Li, W.H., Gong, X.L. 2008. The rheology of shear thickening fluid and the dynamic performance of an STF-filled damper, Smart Materials and Structures, 17, 1-7.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Mehmet Fahri Saraç 0000-0002-0760-5569

Seçil Peker Bu kişi benim 0000-0003-4438-0896

Kerim Yapıcı 0000-0002-3902-9375

Yayımlanma Tarihi 11 Aralık 2018
Gönderilme Tarihi 24 Temmuz 2018
Kabul Tarihi 17 Ekim 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 4

Kaynak Göster

APA Saraç, M. F., Peker, S., & Yapıcı, K. (2018). PARÇACIK BOYUTUNA BAĞLI FÜME SİLİKA BAZLI KESME İLE KALINLAŞAN AKIŞKANLARIN REOLOJİK DAVRANIŞI. Mühendislik Bilimleri Ve Tasarım Dergisi, 6(4), 665-671. https://doi.org/10.21923/jesd.447357