Araştırma Makalesi
BibTex RIS Kaynak Göster

CUTTING TEMPERATURE MEASUREMENT BY THERMAL CAMERA AND FINITE ELEMENT MODELING DURING MACHINING OF Tİ6Al4V ALLOY

Yıl 2019, Cilt: 7 Sayı: 2, 265 - 271, 26.06.2019
https://doi.org/10.21923/jesd.434370

Öz

Machining,
or metal cutting, is one of the most common manufacturing processes. Cutting
temperature can be stated as one of the most important problems in machining
due to its effects on the machined part surface integrity, part tolerances and
the tool wear so on the manufacturing cost. In this study, the cutting
temperatures are determined during machining of Ti6Al4V titanium alloy. Cutting
temperatures were measured by a thermal imaging system in which the most
important problem is choosing the right emissivity value of the measured
surface. Hence, an experimental setup was designed and the emissivity value of
Ti alloy was determined. Then, the cutting temperatures were predicted by
developed finite element model. The experimental and
theoretical
results were compared and a very good match was achieved.

Kaynakça

  • Abukhshim, N.A., Mativenga, P.T., Sheikh, M. A., 2006. Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining. International Journal of Machine Tools and Manufacture, 46(7-8), 782-800.
  • Armendia, M., Garay, A., Villar, A., Davies, M.A., Arrazola, P.J., 2010. High bandwidth temperature measurement in interrupted cutting of difficult to machine materials. CIRP annals, 59(1), 97-100.
  • Da Silva, M.B., Wallbank, J., 1999. Cutting temperature: prediction and measurement methods—a review. Journal of materials processing technology, 88(1-3), 195-202.
  • Davies, M.A., Cooke, A.L., Larsen, E.R., 2005. High bandwidth thermal microscopy of machining AISI 1045 steel. CIRP Annals-Manufacturing Technology, 54(1), 63-66.
  • Ezugwu, E.O., Wang, Z.M., 1997. Titanium alloys and their machinability—a review. Journal of materials processing technology, 68(3), 262-274.
  • Hahn, R.S., 1951. On the temperature developed at the shear plane in the metalcutting process. Journal of Applied Mechanics-Transactions of the ASME, Vol. 18, No. 3, pp. 323-323.
  • Jaeger, J.C., 1942. Moving sources of heat and the temperature of sliding contacts. In Proc. Roy. Soc., NSW Vol. 176, p. 203.
  • Jiang, F., Liu, Z., Wan, Y., Shi, Z., 2013. Analytical modeling and experimental investigation of tool and workpiece temperatures for interrupted cutting 1045 steel by inverse heat conduction method. Journal of Materials Processing Technology, 213(6), 887-894.
  • Johnson, G.R., Cook, W.H., 1985. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering fracture mechanics, 21(1), 31-48.
  • Leshock, C. E., Shin, Y.C., 1997. Investigation on cutting temperature in turning by a tool-work thermocouple technique. Journal of manufacturing science and engineering, 119(4A), 502-508.
  • Longbottom, J.M., Lanham, J.D., 2005. Cutting temperature measurement while machining–a review. Aircraft Engineering and Aerospace Technology, 77(2), 122-130.
  • Ozel, T., Altan, T., 2000. Process simulation using finite element method—prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling. International Journal of Machine Tools and Manufacture, 40(5), 713-738.
  • Shaw, M. C., Cookson, J.O., 1984. Metal cutting principles (pp. 183-201). Oxford: Clarendon press.
  • Stephenson, D.A., Ali, A. 1992. Tool temperatures in interrupted metal cutting. Journal of Engineering for Industry, 114(2), 127-136.
  • Stephenson, D.A., 1993. Tool-work thermocouple temperature measurements—theory and implementation issues. Journal of Engineering for industry, 115(4), 432-437.
  • Sullivan, D., Cotterell, M., 2001. Temperature measurement in single point turning. Journal of Materials Processing Technology, 118(1-3), 301-308.
  • Trent, E.M., Wright, P.K., 2000. Metal cutting. Butterworth-Heinemann.

Ti6Al4V ALAŞIMININ TALAŞLI İMALATI SIRASINDA TERMAL KAMERA İLE SICAKLIK ÖLÇÜMÜ VE SONLU ELEMANLARLA MODELLENMESİ

Yıl 2019, Cilt: 7 Sayı: 2, 265 - 271, 26.06.2019
https://doi.org/10.21923/jesd.434370

Öz

Talaşlı
imalat en yaygın kullanılan imalat yöntemlerinden biridir. Talaşlı imalatta en
önemli problemlerin başında yüzey bütünlüğünü, parça toleransını ve takım
ömrünü dolayısıyla maliyeti etkilemesi nedeniyle kesme sıcaklığı gelmektedir. Özellikle
titanyum, nikel gibi kesilmesi zor alaşımların işlenmesinde kesme sıcaklığının
etkileri daha belirgin olmaktadır. Bu amaçla, bu çalışmada Ti6Al4V alaşımının
kesilmesi sırasında sıcaklıkların belirlenmesine çalışılmıştır. Kesme
sıcaklıkları deneysel olarak termal kamera ile ölçülmüştür. Termal kamera ile
yapılan ölçümlerde karşılaşılan en büyük problem uygun yayma katsayısı
(emissivite) değerinin seçilmesidir. Bu nedenle çalışmada yayma katsayısının
belirlenmesi için bir deney düzeneği tasarlanmıştır. Sonrasında ise bu
sıcaklıklar sonlu elemanlar yardımı ile modellenmiştir. Deneysel ve teorik
sonuçlar karşılaştırılmış ve birbirine oldukça yakın sonuçlar elde edilmiştir.

Kaynakça

  • Abukhshim, N.A., Mativenga, P.T., Sheikh, M. A., 2006. Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining. International Journal of Machine Tools and Manufacture, 46(7-8), 782-800.
  • Armendia, M., Garay, A., Villar, A., Davies, M.A., Arrazola, P.J., 2010. High bandwidth temperature measurement in interrupted cutting of difficult to machine materials. CIRP annals, 59(1), 97-100.
  • Da Silva, M.B., Wallbank, J., 1999. Cutting temperature: prediction and measurement methods—a review. Journal of materials processing technology, 88(1-3), 195-202.
  • Davies, M.A., Cooke, A.L., Larsen, E.R., 2005. High bandwidth thermal microscopy of machining AISI 1045 steel. CIRP Annals-Manufacturing Technology, 54(1), 63-66.
  • Ezugwu, E.O., Wang, Z.M., 1997. Titanium alloys and their machinability—a review. Journal of materials processing technology, 68(3), 262-274.
  • Hahn, R.S., 1951. On the temperature developed at the shear plane in the metalcutting process. Journal of Applied Mechanics-Transactions of the ASME, Vol. 18, No. 3, pp. 323-323.
  • Jaeger, J.C., 1942. Moving sources of heat and the temperature of sliding contacts. In Proc. Roy. Soc., NSW Vol. 176, p. 203.
  • Jiang, F., Liu, Z., Wan, Y., Shi, Z., 2013. Analytical modeling and experimental investigation of tool and workpiece temperatures for interrupted cutting 1045 steel by inverse heat conduction method. Journal of Materials Processing Technology, 213(6), 887-894.
  • Johnson, G.R., Cook, W.H., 1985. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering fracture mechanics, 21(1), 31-48.
  • Leshock, C. E., Shin, Y.C., 1997. Investigation on cutting temperature in turning by a tool-work thermocouple technique. Journal of manufacturing science and engineering, 119(4A), 502-508.
  • Longbottom, J.M., Lanham, J.D., 2005. Cutting temperature measurement while machining–a review. Aircraft Engineering and Aerospace Technology, 77(2), 122-130.
  • Ozel, T., Altan, T., 2000. Process simulation using finite element method—prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling. International Journal of Machine Tools and Manufacture, 40(5), 713-738.
  • Shaw, M. C., Cookson, J.O., 1984. Metal cutting principles (pp. 183-201). Oxford: Clarendon press.
  • Stephenson, D.A., Ali, A. 1992. Tool temperatures in interrupted metal cutting. Journal of Engineering for Industry, 114(2), 127-136.
  • Stephenson, D.A., 1993. Tool-work thermocouple temperature measurements—theory and implementation issues. Journal of Engineering for industry, 115(4), 432-437.
  • Sullivan, D., Cotterell, M., 2001. Temperature measurement in single point turning. Journal of Materials Processing Technology, 118(1-3), 301-308.
  • Trent, E.M., Wright, P.K., 2000. Metal cutting. Butterworth-Heinemann.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Umut Karagüzel 0000-0001-5178-7614

Yayımlanma Tarihi 26 Haziran 2019
Gönderilme Tarihi 18 Haziran 2018
Kabul Tarihi 31 Aralık 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 2

Kaynak Göster

APA Karagüzel, U. (2019). Ti6Al4V ALAŞIMININ TALAŞLI İMALATI SIRASINDA TERMAL KAMERA İLE SICAKLIK ÖLÇÜMÜ VE SONLU ELEMANLARLA MODELLENMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 7(2), 265-271. https://doi.org/10.21923/jesd.434370