Centrality is one of the most frequently
studied subjects of social network analysis. The identification of the most
effective entities in a network or system can be found by measures of
centrality. In this study, using the data of air traffic with Renyi entropy,
the most influential countries in this field were analyzed in the graph
structure. The most effective countries in air traffic were identified. It has
been shown that centrality measurements can be made with Renyi entropy in a
weighted and directional network. A method for the detection of vital nodes in
a network was proposed. Difference from Shannon, it was observed that results
could be obtained for different situations by using the α coefficient in Renyi.
Sometimes measuring only the effect of edge weight or node degree does not
yield accurate results. Using α to adjust this effect has enabled us to get
more accurate results.
Alexanderson, G. L. (2006). About the cover: Euler and Königsberg’s bridges: A historical view. Bulletin of the American Mathematical Society. https://doi.org/10.1090/S0273-0979-06-01130-X
Bromiley, P. A., Thacker, N. A., & Bouhova-Thacker, E. (2004). Shannon entropy, Renyi entropy, and information. Erişim Tarihi: 14 Aralık 2018, website: http://www.tina-vision.net/docs/memos/2004-004.pdf
Cong, W., Hu, M., Dong, B., Wang, Y., & Feng, C. (2016). Empirical analysis of airport network and critical airports. Chinese Journal of Aeronautics, 29(2), 512–519. https://doi.org/10.1016/j.cja.2016.01.010
Dehmer, M., & Mowshowitz, A. (2011). A history of graph entropy measures. Information Sciences, 181(1), 57–78. https://doi.org/10.1016/j.ins.2010.08.041
Du, Y., Gao, C., Hu, Y., Mahadevan, S., & Deng, Y. (2014). A new method of identifying influential nodes in complex networks based on TOPSIS. Physica A: Statistical Mechanics and Its Applications, 399, 57–69. https://doi.org/10.1016/j.physa.2013.12.031
Ernesto, T. (1956). A note on the information content of graphs. The Bulletin of Mathematical Biophysics, 18(2), 129–135.
Everett, M. G., & Borgatti, S. P. (2005). Extending Centrality. In P. J. Carrington, J. Scott, & S. Wasserman (Eds.), Models and Methods in Social Network Analysis (pp. 57–76). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511811395.004
Fei, L., & Deng, Y. (2017). A new method to identify influential nodes based on relative entropy. Chaos, Solitons and Fractals, 104, 257–267. https://doi.org/10.1016/j.chaos.2017.08.010
Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239. https://doi.org/10.1016/0378-8733(78)90021-7
Hartley, R. V. L. (1928). Transmission of Information. Bell System Technical Journal, 535. https://doi.org/10.1109/83.748891
http://www.visualizing.org/datasets/global-flights-network. (n.d.). Global Flight Network Data. Erişim Tarihi: 11 Ekim 2018, from https://github.com/gsmanu007/Complex-network-analysis-of-Airport-network-data
Leskovec, J., Rajaraman, A., & Ullman, J. D. (2014). Mining of massive datasets: Second edition. Mining of Massive Datasets: Second Edition. https://doi.org/10.1017/CBO9781139924801
Moreno, J. L. (1934). Who Shall Survive? A New Approach to the Problem of Human Interrelations. Nervous and Mental Disease Publishing (Vol. 58). https://doi.org/10.2307/2084777
Mowshowitz, A. (1968). Entropy and the complexity of graphs: I. An index of the relative complexity of a graph. The Bulletin of Mathematical Biophysics, 30(1), 175–204. https://doi.org/10.1007/BF02476948
Nie, T., Guo, Z., Zhao, K., & Lu, Z. M. (2016). Using mapping entropy to identify node centrality in complex networks. Physica A: Statistical Mechanics and Its Applications, 453, 290–297. https://doi.org/10.1016/j.physa.2016.02.009
Rashevsky, N. (1955). Life, information theory, and topology. The Bulletin of Mathematical Biophysics, 17(3), 229–235. https://doi.org/10.1007/BF02477860
Rényi, A. (1961). On measures of entropy and information. In Fourth Berkeley Symposium on Mathematical Statistics and Probability (p. 547). https://doi.org/10.1021/jp106846b
Shannon, C. E. (1951). Prediction and Entropy of Printed English. Bell System Technical Journal, 30(1), 50–64. https://doi.org/10.1002/j.1538-7305.1951.tb01366.x
Tutzauer, F. (2007). Entropy as a measure of centrality in networks characterized by path-transfer flow. Social Networks, 29(2), 249–265. https://doi.org/10.1016/j.socnet.2006.10.001
Wang, S., Du, Y., & Deng, Y. (2017). A new measure of identifying influential nodes: Efficiency centrality. Communications in Nonlinear Science and Numerical Simulation, 47, 151–163. https://doi.org/10.1016/j.cnsns.2016.11.008
Wikipedia.org. (n.d.). https://tr.wikipedia.org/wiki/Termodinamik Erişim Tarihi 19 Temmuz 2018.
RENYI ENTROPI ILE ÜLKELERİN HAVA TRAFİĞİNİN ANALİZİ
Merkezilik sosyal ağ analizi yapan
kişilerin en çok çalıştığı konulardan biridir. Bir ağdaki en etkili ve sisteme
etkisi olan varlıkların tespiti merkezilik ölçüleri ile bulunabilir. Bu
çalışmada Renyi entropi ile havayolu trafiği verileri kullanılarak bu alandaki
en etkili ülkeler çizge yapısında analiz edildi. Hava trafiğinde en merkezi
ülkeler tespit edildi. Ağırlıklı ve yönlü bir ağda Renyi entropi ile merkezilik
ölçümlerinin yapılabileceği gösterildi. Bir ağdaki hayati öneme sahip
düğümlerin tespiti için bir yöntem önerildi. Shannon’dan farklı olarak Renyi’de
α katsayısı kullanılarak farklı durumlar için sonuç elde edilebileceği görüldü.
Sadece kenar ağırlıklarının veya düğüm derecelerinin etkisinin ölçülmesi bazen
doğru sonuçlar vermediği için α’nın bu etkiyi ayarlamak için kullanılması daha
doğru sonuçlar almamızı sağladı.
Alexanderson, G. L. (2006). About the cover: Euler and Königsberg’s bridges: A historical view. Bulletin of the American Mathematical Society. https://doi.org/10.1090/S0273-0979-06-01130-X
Bromiley, P. A., Thacker, N. A., & Bouhova-Thacker, E. (2004). Shannon entropy, Renyi entropy, and information. Erişim Tarihi: 14 Aralık 2018, website: http://www.tina-vision.net/docs/memos/2004-004.pdf
Cong, W., Hu, M., Dong, B., Wang, Y., & Feng, C. (2016). Empirical analysis of airport network and critical airports. Chinese Journal of Aeronautics, 29(2), 512–519. https://doi.org/10.1016/j.cja.2016.01.010
Dehmer, M., & Mowshowitz, A. (2011). A history of graph entropy measures. Information Sciences, 181(1), 57–78. https://doi.org/10.1016/j.ins.2010.08.041
Du, Y., Gao, C., Hu, Y., Mahadevan, S., & Deng, Y. (2014). A new method of identifying influential nodes in complex networks based on TOPSIS. Physica A: Statistical Mechanics and Its Applications, 399, 57–69. https://doi.org/10.1016/j.physa.2013.12.031
Ernesto, T. (1956). A note on the information content of graphs. The Bulletin of Mathematical Biophysics, 18(2), 129–135.
Everett, M. G., & Borgatti, S. P. (2005). Extending Centrality. In P. J. Carrington, J. Scott, & S. Wasserman (Eds.), Models and Methods in Social Network Analysis (pp. 57–76). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511811395.004
Fei, L., & Deng, Y. (2017). A new method to identify influential nodes based on relative entropy. Chaos, Solitons and Fractals, 104, 257–267. https://doi.org/10.1016/j.chaos.2017.08.010
Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239. https://doi.org/10.1016/0378-8733(78)90021-7
Hartley, R. V. L. (1928). Transmission of Information. Bell System Technical Journal, 535. https://doi.org/10.1109/83.748891
http://www.visualizing.org/datasets/global-flights-network. (n.d.). Global Flight Network Data. Erişim Tarihi: 11 Ekim 2018, from https://github.com/gsmanu007/Complex-network-analysis-of-Airport-network-data
Leskovec, J., Rajaraman, A., & Ullman, J. D. (2014). Mining of massive datasets: Second edition. Mining of Massive Datasets: Second Edition. https://doi.org/10.1017/CBO9781139924801
Moreno, J. L. (1934). Who Shall Survive? A New Approach to the Problem of Human Interrelations. Nervous and Mental Disease Publishing (Vol. 58). https://doi.org/10.2307/2084777
Mowshowitz, A. (1968). Entropy and the complexity of graphs: I. An index of the relative complexity of a graph. The Bulletin of Mathematical Biophysics, 30(1), 175–204. https://doi.org/10.1007/BF02476948
Nie, T., Guo, Z., Zhao, K., & Lu, Z. M. (2016). Using mapping entropy to identify node centrality in complex networks. Physica A: Statistical Mechanics and Its Applications, 453, 290–297. https://doi.org/10.1016/j.physa.2016.02.009
Rashevsky, N. (1955). Life, information theory, and topology. The Bulletin of Mathematical Biophysics, 17(3), 229–235. https://doi.org/10.1007/BF02477860
Rényi, A. (1961). On measures of entropy and information. In Fourth Berkeley Symposium on Mathematical Statistics and Probability (p. 547). https://doi.org/10.1021/jp106846b
Shannon, C. E. (1951). Prediction and Entropy of Printed English. Bell System Technical Journal, 30(1), 50–64. https://doi.org/10.1002/j.1538-7305.1951.tb01366.x
Tutzauer, F. (2007). Entropy as a measure of centrality in networks characterized by path-transfer flow. Social Networks, 29(2), 249–265. https://doi.org/10.1016/j.socnet.2006.10.001
Wang, S., Du, Y., & Deng, Y. (2017). A new measure of identifying influential nodes: Efficiency centrality. Communications in Nonlinear Science and Numerical Simulation, 47, 151–163. https://doi.org/10.1016/j.cnsns.2016.11.008
Wikipedia.org. (n.d.). https://tr.wikipedia.org/wiki/Termodinamik Erişim Tarihi 19 Temmuz 2018.
Tuğal, İ., & Karcı, A. (2019). RENYI ENTROPI ILE ÜLKELERİN HAVA TRAFİĞİNİN ANALİZİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 7(4), 843-853. https://doi.org/10.21923/jesd.497454