Araştırma Makalesi
BibTex RIS Kaynak Göster

HYBRID APPLICATION LAYER PROTOCOL DESIGN FOR INTERNET OF THINGS

Yıl 2020, Cilt: 8 Sayı: 1, 285 - 304, 20.03.2020
https://doi.org/10.21923/jesd.530295

Öz

One of the important factors affecting communication performance in the Internet of Things is the messaging protocol. MQTT, XMPP and AMQP are centralized application protocols that communicate through the server. DDS and CoAP are application protocols that can communicate directly, especially in real-time applications. As the Internet of Things is becoming more widespread and usage scenarios have different requirements, new approaches to data communication are required. In this study a UDP based hybrid protocol is designed which can communicate both directly and through central server. Operating logic and packet structure of the developed protocol is examined and compared with MQTT protocol with respect to their functionality. 

Kaynakça

  • Anjum, A., Ilyas, M. U., Gorden, D., Gar, C., & Guo vd., 2014. Internet of Things – From Research and Innovation to Market Deployment. (O. Vermesan & P. Friess, Eds.)Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) (Vol. 6). River Publishers.
  • Atzori, L., Iera, A., & Morabito, G., 2010. The Internet of Things: A Survey. Computer Networks: The International Journal of Computer and Telecommunications Networking, 54(15), 2787–2805. http://doi.org/10.1016/j.comnet.2010.05.010
  • Bellavista, P., & Zanni, A., 2016. Towards better scalability for IoT-cloud interactions via combined exploitation of MQTT and CoAP. 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow, RTSI 2016. http://doi.org/10.1109/RTSI.2016.7740614
  • Chen, Y., & Kunz, T., 2016. Performance evaluation of IoT protocols under a constrained wireless access network. In 2016 International Conference on Selected Topics in Mobile and Wireless Networking, MoWNeT 2016. http://doi.org/10.1109/MoWNet.2016.7496622
  • Choi, D., Jung, J., Kang, H., & Koh, S., 2017. Cluster-based CoAP for Message Queueing in Internet-of-Things Networks, 584–588.
  • Collina, M., Bartolucci, M., Vanelli-Coralli, A., & Corazza, G. E., 2014. Internet of Things application layer protocol analysis over error and delay prone links. In 2014 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop, ASMS/SPSC 2014 (s. 398–404). http://doi.org/10.1109/ASMS-SPSC.2014.6934573
  • Dizdarevic, J., Carpio, F., & Jukan, A., 2018. Survey of Communication Protocols for Internet-of-Things and Related Challenges of Fog and Cloud Computing Integration. CoRR, 1(1), 1–27.
  • Florea, I., Rughinis, R., Ruse, L., & Dragomir, D., 2017. Survey of Standardized Protocols for the Internet of Things. Proceedings - 2017 21st International Conference on Control Systems and Computer, CSCS 2017, 190–196. http://doi.org/10.1109/CSCS.2017.33
  • Fortino, G., Guerrieri, A., Russo, W., & Savaglio, C., 2014. Integration of agent-based and Cloud Computing for the smart objects-oriented IoT. Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2014, 493–498. http://doi.org/10.1109/CSCWD.2014.6846894
  • Grygoruk, A., & Legierski, J., 2016. IoT gateway – implementation proposal based on Arduino board. In Proceedings of the Federated Conference on Computer Science (Vol. 8, s. 1011–1014). http://doi.org/10.15439/2016F283
  • Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M., 2013. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660. http://doi.org/10.1016/j.future.2013.01.010
  • Gündoğan, C., Kietzmann, P., Lenders, M., Petersen, H., Schmidt, T. C., & Wählisch, M., 2018. NDN, CoAP, and MQTT: A Comparative Measurement Study in the IoT. http://doi.org/arXiv:1806.01444v2
  • Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D., 2014. Part III. IoT Use Cases. From Machine-To-Machine to the Internet of Things, 233–235. http://doi.org/10.1016/B978-0-12-407684-6.00033-4
  • Huo, C., 2014. A Centralized IoT Middleware System for DevicesWorking Across Application Domains Using Self-descriptive Capability Profile. Doktora Tezi, California Üniversitesi.
  • Ishaq, I., Carels, D., Teklemariam, G., Hoebeke, J., Abeele, F., Poorter, E., vd., 2013. IETF Standardization in the Field of the Internet of Things (IoT): A Survey. Journal of Sensor and Actuator Networks (Vol. 2). http://doi.org/10.3390/jsan2020235
  • ITU-T. (2014). Focus Group on M2M service layer: APIs and protocols overview. Çevrimiçi, https://www.itu.int/opb/publications.aspx?parent=T-FG&selection=6&sector, Son Erişim 18.02.2019
  • Jara, A. J., Martinez-Julia, P., & Skarmeta, A., 2012. Light-weight multicast DNS and DNS-SD (lmDNS-SD): IPv6-based resource and service discovery for the web of things. Proceedings - 6th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, IMIS 2012, 731–738. http://doi.org/10.1109/IMIS.2012.200
  • Johnsen, F. T., Landmark, L., Hauge, M., Larsen, E., & Kure, O., 2018. Publish/Subscribe Versus a Content-Based Approach for Information Dissemination. In MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM) (s. 1–9). http://doi.org/10.1109/MILCOM.2018.8599786
  • Kang, B., Kim, D., & Choo, H., 2017. Internet of Everything: A Large-Scale Autonomic IoT Gateway. IEEE Transactions on Multi-Scale Computing Systems, 3(3), 206–214. http://doi.org/10.1109/TMSCS.2017.2705683
  • Kim, H., 2017. Securing the Internet of Things via Locally Centralized , Globally Distributed Authentication and Authorization.
  • Kim, S. M., Choi, H. S., & Rhee, W. S., 2016. IoT home gateway for auto-configuration and management of MQTT devices. 2015 IEEE Conference on Wireless Sensors, ICWiSE 2015, 12–17. http://doi.org/10.1109/ICWISE.2015.7380346
  • Kimsey, T., Jeffords, J., Moghaddam, Y., & Rucinski, A., 2015. An IoT Based Service System as a Research and Educational Platform. New Trends in Intelligent Information and Database Systems, 598, (s. 249–257). http://doi.org/10.1007/978-3-319-16211-9_26
  • Klauck, R., & Kirsche, M., 2012. Bonjour Contiki: A Case Study of a DNS-Based Discovery Service for the Internet of Things. In X.-Y. Li, S. Papavassiliou, & S. Ruehrup (Eds.), Ad-hoc, Mobile, and Wireless Networks (pp. 316–329). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Lars, D., 2015. Performance Evaluation of M2M Protocols Over Cellular Networks in a Lab Environment. In Conference: 18th International Conference on Intelligence in Next Generation Networks (ICIN), 2015, Paris, Fransa (s. 70–75). http://doi.org/http://dx.doi.org/10.1109/ICIN.2015.7073809
  • Luzuriaga, J. E., Perez, M., Boronat, P., Cano, J. C., Calafate, C., & Manzoni, P., 2015. A comparative evaluation of AMQP and MQTT protocols over unstable and mobile networks. In 2015 12th Annual IEEE Consumer Communications and Networking Conference, CCNC 2015 (s. 931–936). http://doi.org/10.1109/CCNC.2015.7158101
  • M. Koster, & Keranen, A., 2015. Message Queueing in the Constrained Application Protocol (CoAP). Online: https://tools.ietf.org/html/draft-koster-core-coapmq-00, Son Erişim: 20.02.2019
  • Menyah, N., 2017. A Real Time Demonstrative Analysis Of Lightweight Payload Encryption in Resource Constrained Devices Based on MQTT. Yüksek Lisans Tezi, Sakarya Üniversitesi.
  • Naik, N., 2017. Choice of Effective Messaging Protocols for IoT Systems : MQTT , CoAP , AMQP and HTTP.
  • Ngu, A. H., Gutierrez, M., Metsis, V., & Sheng, Q. Z. (2017). IoT Middleware : A Survey on Issues and Enabling Technologies. IEEE Internet of Things Journal, 4(1), 1–20. http://doi.org/10.1109/JIOT.2016.2615180
  • Nóbrega, L., Gonçalves, P., Pedreiras, P., Pereira, J., Nóbrega, L., Gonçalves, P., … Pereira, J., 2019. An IoT-Based Solution for Intelligent Farming. Sensors, 19(3), 603. http://doi.org/10.3390/s19030603
  • Pathania, N., 2017. Traffic Prioritization in an MQTT Gateway. In International Journal of Computer Applications (Vol. 164, s. 32–38).
  • Sasaki, Y., Yokotani, T., & Mukai, H., 2018. Proposals on IoT Communication through MQTT over L2 Network and their Performance Evaluation. In 2018 International Conference on Innovations in Information Technology (IIT) (s. 30–35).
  • Sch, B., Bauer, J., & Aschenbruck, N., 2017. Improving Energy Efficiency of MQTT-SN in Lossy Environments using Seed-based Network Coding. 42nd Annual IEEE Conference on Local Computer Networks. http://doi.org/10.1109/LCN.2017.87
  • Schmitt, A., Carlier, F., & Renault, V., 2018. Dynamic bridge generation for IoT data exchange via the MQTT protocol. Procedia Computer Science, 130, 90–97. http://doi.org/10.1016/j.procs.2018.04.016
  • Shelby, Z., Hartke, K., & Bormann, C., 2014. The Constrained Application Protocol (CoAP). Online: http://doi.org/10.17487/rfc7252, Son Erişim: 20.02.2019
  • Shin, I.-J., Song, B.-K., & Eom, D.-S., 2017. International Electronical Committee (IEC) 61850 Mapping with Constrained Application Protocol (CoAP) in Smart Grids Based European Telecommunications Standard Institute Machine-to-Machine (M2M) Environment. Energies, 10(3), 393. http://doi.org/10.3390/en10030393
  • Su, P. H., Shih, C., Hsu, J. Y., Lin, K., & Wang, Y., 2014. Decentralized Fault Tolerance Mechanism for Intelligent IoT / M2M Middleware. In 2014 IEEE World Forum on Internet of Things (WF-IoT) (s. 45–50).
  • Talaminos-Barroso, A., Estudillo-Valderrama, M. A., Roa, L. M., Reina-Tosina, J., & Ortega-Ruiz, F., 2016. A Machine-to-Machine protocol benchmark for eHealth applications - Use case: Respiratory rehabilitation. Computer Methods and Programs in Biomedicine, 129, 1–11. http://doi.org/10.1016/j.cmpb.2016.03.004
  • Tantitharanukul, N., Osathanunkul, K., Hantrakul, K., Pramokchon, P., & Khoenkaw, P., 2016. MQTT-Topics Management System for sharing of Open Data, 1–6.
  • Thangavel, D., Ma, X., Valera, A., Tan, H. X., & Tan, C. K. Y., 2014. Performance evaluation of MQTT and CoAP via a common middleware. In IEEE ISSNIP 2014 - 2014 IEEE 9th International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Conference Proceedings. http://doi.org/10.1109/ISSNIP.2014.6827678
  • Thota, P., & Kim, Y., 2016. Implementation and Comparison of M2M Protocols for Internet of Things. In 2016 4th Intl Conf on Applied Computing and Information Technology/3rd Intl Conf on Computational Science/Intelligence and Applied Informatics/1st Intl Conf on Big Data, Cloud Computing, Data Science Engineering (ACIT-CSII-BCD) (s. 43–48). http://doi.org/10.1109/ACIT-CSII-BCD.2016.021

NESNELERİN İNTERNETİ İÇİN HİBRİT UYGULAMA KATMANI PROTOKOL TASARIMI

Yıl 2020, Cilt: 8 Sayı: 1, 285 - 304, 20.03.2020
https://doi.org/10.21923/jesd.530295

Öz

Nesnelerin İnternetinde, iletişim başarımını etkileyen önemli faktörlerden biri kullanılacak olan mesajlaşma protokolüdür. MQTT, XMPP ve AMQP merkezi yapıda ve sunucu aracılığıyla haberleşen uygulama protokolleridir. DDS ve CoAP ise özellikle gerçek zamanlı uygulamalarda doğrudan iletişim için kullanılan uygulama protokolleridir. Nesnelerin İnternetinin giderek yaygınlaşması ve kullanım senaryolarının farklı gereksinimlere sahip olması, veri iletişiminde yeni yaklaşımların geliştirilmesini gerekli kılmaktadır. Bu çalışmada hem merkezi sunucu aracılığıyla hem de doğrudan iletişim sağlayabilen UDP tabanlı hibrit bir protokol tasarlanmıştır. Geliştirilen protokolün çalışma mantığı, paket yapısı ele alınmış ve işlevsellik yönünden MQTT protokolü ile karşılaştırılmıştır.

Kaynakça

  • Anjum, A., Ilyas, M. U., Gorden, D., Gar, C., & Guo vd., 2014. Internet of Things – From Research and Innovation to Market Deployment. (O. Vermesan & P. Friess, Eds.)Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) (Vol. 6). River Publishers.
  • Atzori, L., Iera, A., & Morabito, G., 2010. The Internet of Things: A Survey. Computer Networks: The International Journal of Computer and Telecommunications Networking, 54(15), 2787–2805. http://doi.org/10.1016/j.comnet.2010.05.010
  • Bellavista, P., & Zanni, A., 2016. Towards better scalability for IoT-cloud interactions via combined exploitation of MQTT and CoAP. 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow, RTSI 2016. http://doi.org/10.1109/RTSI.2016.7740614
  • Chen, Y., & Kunz, T., 2016. Performance evaluation of IoT protocols under a constrained wireless access network. In 2016 International Conference on Selected Topics in Mobile and Wireless Networking, MoWNeT 2016. http://doi.org/10.1109/MoWNet.2016.7496622
  • Choi, D., Jung, J., Kang, H., & Koh, S., 2017. Cluster-based CoAP for Message Queueing in Internet-of-Things Networks, 584–588.
  • Collina, M., Bartolucci, M., Vanelli-Coralli, A., & Corazza, G. E., 2014. Internet of Things application layer protocol analysis over error and delay prone links. In 2014 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop, ASMS/SPSC 2014 (s. 398–404). http://doi.org/10.1109/ASMS-SPSC.2014.6934573
  • Dizdarevic, J., Carpio, F., & Jukan, A., 2018. Survey of Communication Protocols for Internet-of-Things and Related Challenges of Fog and Cloud Computing Integration. CoRR, 1(1), 1–27.
  • Florea, I., Rughinis, R., Ruse, L., & Dragomir, D., 2017. Survey of Standardized Protocols for the Internet of Things. Proceedings - 2017 21st International Conference on Control Systems and Computer, CSCS 2017, 190–196. http://doi.org/10.1109/CSCS.2017.33
  • Fortino, G., Guerrieri, A., Russo, W., & Savaglio, C., 2014. Integration of agent-based and Cloud Computing for the smart objects-oriented IoT. Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2014, 493–498. http://doi.org/10.1109/CSCWD.2014.6846894
  • Grygoruk, A., & Legierski, J., 2016. IoT gateway – implementation proposal based on Arduino board. In Proceedings of the Federated Conference on Computer Science (Vol. 8, s. 1011–1014). http://doi.org/10.15439/2016F283
  • Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M., 2013. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660. http://doi.org/10.1016/j.future.2013.01.010
  • Gündoğan, C., Kietzmann, P., Lenders, M., Petersen, H., Schmidt, T. C., & Wählisch, M., 2018. NDN, CoAP, and MQTT: A Comparative Measurement Study in the IoT. http://doi.org/arXiv:1806.01444v2
  • Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D., 2014. Part III. IoT Use Cases. From Machine-To-Machine to the Internet of Things, 233–235. http://doi.org/10.1016/B978-0-12-407684-6.00033-4
  • Huo, C., 2014. A Centralized IoT Middleware System for DevicesWorking Across Application Domains Using Self-descriptive Capability Profile. Doktora Tezi, California Üniversitesi.
  • Ishaq, I., Carels, D., Teklemariam, G., Hoebeke, J., Abeele, F., Poorter, E., vd., 2013. IETF Standardization in the Field of the Internet of Things (IoT): A Survey. Journal of Sensor and Actuator Networks (Vol. 2). http://doi.org/10.3390/jsan2020235
  • ITU-T. (2014). Focus Group on M2M service layer: APIs and protocols overview. Çevrimiçi, https://www.itu.int/opb/publications.aspx?parent=T-FG&selection=6&sector, Son Erişim 18.02.2019
  • Jara, A. J., Martinez-Julia, P., & Skarmeta, A., 2012. Light-weight multicast DNS and DNS-SD (lmDNS-SD): IPv6-based resource and service discovery for the web of things. Proceedings - 6th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, IMIS 2012, 731–738. http://doi.org/10.1109/IMIS.2012.200
  • Johnsen, F. T., Landmark, L., Hauge, M., Larsen, E., & Kure, O., 2018. Publish/Subscribe Versus a Content-Based Approach for Information Dissemination. In MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM) (s. 1–9). http://doi.org/10.1109/MILCOM.2018.8599786
  • Kang, B., Kim, D., & Choo, H., 2017. Internet of Everything: A Large-Scale Autonomic IoT Gateway. IEEE Transactions on Multi-Scale Computing Systems, 3(3), 206–214. http://doi.org/10.1109/TMSCS.2017.2705683
  • Kim, H., 2017. Securing the Internet of Things via Locally Centralized , Globally Distributed Authentication and Authorization.
  • Kim, S. M., Choi, H. S., & Rhee, W. S., 2016. IoT home gateway for auto-configuration and management of MQTT devices. 2015 IEEE Conference on Wireless Sensors, ICWiSE 2015, 12–17. http://doi.org/10.1109/ICWISE.2015.7380346
  • Kimsey, T., Jeffords, J., Moghaddam, Y., & Rucinski, A., 2015. An IoT Based Service System as a Research and Educational Platform. New Trends in Intelligent Information and Database Systems, 598, (s. 249–257). http://doi.org/10.1007/978-3-319-16211-9_26
  • Klauck, R., & Kirsche, M., 2012. Bonjour Contiki: A Case Study of a DNS-Based Discovery Service for the Internet of Things. In X.-Y. Li, S. Papavassiliou, & S. Ruehrup (Eds.), Ad-hoc, Mobile, and Wireless Networks (pp. 316–329). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Lars, D., 2015. Performance Evaluation of M2M Protocols Over Cellular Networks in a Lab Environment. In Conference: 18th International Conference on Intelligence in Next Generation Networks (ICIN), 2015, Paris, Fransa (s. 70–75). http://doi.org/http://dx.doi.org/10.1109/ICIN.2015.7073809
  • Luzuriaga, J. E., Perez, M., Boronat, P., Cano, J. C., Calafate, C., & Manzoni, P., 2015. A comparative evaluation of AMQP and MQTT protocols over unstable and mobile networks. In 2015 12th Annual IEEE Consumer Communications and Networking Conference, CCNC 2015 (s. 931–936). http://doi.org/10.1109/CCNC.2015.7158101
  • M. Koster, & Keranen, A., 2015. Message Queueing in the Constrained Application Protocol (CoAP). Online: https://tools.ietf.org/html/draft-koster-core-coapmq-00, Son Erişim: 20.02.2019
  • Menyah, N., 2017. A Real Time Demonstrative Analysis Of Lightweight Payload Encryption in Resource Constrained Devices Based on MQTT. Yüksek Lisans Tezi, Sakarya Üniversitesi.
  • Naik, N., 2017. Choice of Effective Messaging Protocols for IoT Systems : MQTT , CoAP , AMQP and HTTP.
  • Ngu, A. H., Gutierrez, M., Metsis, V., & Sheng, Q. Z. (2017). IoT Middleware : A Survey on Issues and Enabling Technologies. IEEE Internet of Things Journal, 4(1), 1–20. http://doi.org/10.1109/JIOT.2016.2615180
  • Nóbrega, L., Gonçalves, P., Pedreiras, P., Pereira, J., Nóbrega, L., Gonçalves, P., … Pereira, J., 2019. An IoT-Based Solution for Intelligent Farming. Sensors, 19(3), 603. http://doi.org/10.3390/s19030603
  • Pathania, N., 2017. Traffic Prioritization in an MQTT Gateway. In International Journal of Computer Applications (Vol. 164, s. 32–38).
  • Sasaki, Y., Yokotani, T., & Mukai, H., 2018. Proposals on IoT Communication through MQTT over L2 Network and their Performance Evaluation. In 2018 International Conference on Innovations in Information Technology (IIT) (s. 30–35).
  • Sch, B., Bauer, J., & Aschenbruck, N., 2017. Improving Energy Efficiency of MQTT-SN in Lossy Environments using Seed-based Network Coding. 42nd Annual IEEE Conference on Local Computer Networks. http://doi.org/10.1109/LCN.2017.87
  • Schmitt, A., Carlier, F., & Renault, V., 2018. Dynamic bridge generation for IoT data exchange via the MQTT protocol. Procedia Computer Science, 130, 90–97. http://doi.org/10.1016/j.procs.2018.04.016
  • Shelby, Z., Hartke, K., & Bormann, C., 2014. The Constrained Application Protocol (CoAP). Online: http://doi.org/10.17487/rfc7252, Son Erişim: 20.02.2019
  • Shin, I.-J., Song, B.-K., & Eom, D.-S., 2017. International Electronical Committee (IEC) 61850 Mapping with Constrained Application Protocol (CoAP) in Smart Grids Based European Telecommunications Standard Institute Machine-to-Machine (M2M) Environment. Energies, 10(3), 393. http://doi.org/10.3390/en10030393
  • Su, P. H., Shih, C., Hsu, J. Y., Lin, K., & Wang, Y., 2014. Decentralized Fault Tolerance Mechanism for Intelligent IoT / M2M Middleware. In 2014 IEEE World Forum on Internet of Things (WF-IoT) (s. 45–50).
  • Talaminos-Barroso, A., Estudillo-Valderrama, M. A., Roa, L. M., Reina-Tosina, J., & Ortega-Ruiz, F., 2016. A Machine-to-Machine protocol benchmark for eHealth applications - Use case: Respiratory rehabilitation. Computer Methods and Programs in Biomedicine, 129, 1–11. http://doi.org/10.1016/j.cmpb.2016.03.004
  • Tantitharanukul, N., Osathanunkul, K., Hantrakul, K., Pramokchon, P., & Khoenkaw, P., 2016. MQTT-Topics Management System for sharing of Open Data, 1–6.
  • Thangavel, D., Ma, X., Valera, A., Tan, H. X., & Tan, C. K. Y., 2014. Performance evaluation of MQTT and CoAP via a common middleware. In IEEE ISSNIP 2014 - 2014 IEEE 9th International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Conference Proceedings. http://doi.org/10.1109/ISSNIP.2014.6827678
  • Thota, P., & Kim, Y., 2016. Implementation and Comparison of M2M Protocols for Internet of Things. In 2016 4th Intl Conf on Applied Computing and Information Technology/3rd Intl Conf on Computational Science/Intelligence and Applied Informatics/1st Intl Conf on Big Data, Cloud Computing, Data Science Engineering (ACIT-CSII-BCD) (s. 43–48). http://doi.org/10.1109/ACIT-CSII-BCD.2016.021
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgisayar Yazılımı
Bölüm Araştırma Makalesi \ Research Makaleler
Yazarlar

Erdal Özdoğan 0000-0002-3339-0493

O. Ayhan Erdem 0000-0001-7761-1078

Yayımlanma Tarihi 20 Mart 2020
Gönderilme Tarihi 21 Şubat 2019
Kabul Tarihi 27 Kasım 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 8 Sayı: 1

Kaynak Göster

APA Özdoğan, E., & Erdem, O. A. (2020). NESNELERİN İNTERNETİ İÇİN HİBRİT UYGULAMA KATMANI PROTOKOL TASARIMI. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(1), 285-304. https://doi.org/10.21923/jesd.530295