Araştırma Makalesi
BibTex RIS Kaynak Göster

PREPARATION OF DOPED TiO2 PHOTOCATALYSTS AND THEIR DECOLORIZATION EFFICIENCIES UNDER SOLAR LIGHT

Yıl 2020, Cilt: 8 Sayı: 3, 655 - 663, 24.09.2020
https://doi.org/10.21923/jesd.672207

Öz

Photocatalysis has gained a great interest for the degradation of organic pollutants in aqueous media. This effective advanced oxidation technique is basically based on the oxidation of the target molecule by hydroxyl radicals. The most widely preferred and powerful photocatalyst is titanium dioxide (TiO2), but it has limited use under solar light because of its band gap energy. This is a major drawback for various possible applications. In order to overcome this disadvantage, doping the photocatalyst with metals and non-metals to narrow the band gap can be applied. In this work, we have prepared visible light active photocatalysts by using wet-impregnation method. Decolorization of two different classes of dyes, Rhodamine B and Congo Red, was carried out under simulated solar light with doped TiO2. The photocatalytic performances of non-metal doped (C, N, Se), metal doped (Cu, Fe) and codoped (N/S) TiO2 photocatalysts were investigated by UV-vis studies and removal percentage calculations.

Teşekkür

Authors would like to express their gratitude to Professor Miray Bekbolet for allowing them to conduct photocatalytic experiments at the laboratories of Boğaziçi University, Institute of Environmental Sciences.

Kaynakça

  • Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y., 2001. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 293 (5528): 269-271.
  • Bahnemann, D., 2004. Photocatalytic water treatment: solar energy applications. Solar Energy, 77 (5): 445-459.
  • Bahnemann, D., Cunningham, J., Fox, M., Pelizzetti, E., Pichat, P., Serpone, N., Helz, G., Zepp, R. and Crosby, D., 1994. Aquatic and surface photochemistry. Lewis, Boca Raton, FL: 261.
  • Birben Nazmiye, C., Uyguner-Demirel Ceyda, S., Sen-Kavurmaci, S., Gürkan Yelda, Y., Türkten, N., Kılıç, M., Çınar, Z. and Bekbolet, M., 2016. Photocatalytic Performance of Anion Doped TiO2 on the Degradation of Complex Organic Matrix. Journal of Advanced Oxidation Technologies. 19: 199.
  • Birben, N. C., Uyguner-Demirel, C. S., Kavurmaci, S. S., Gürkan, Y. Y., Turkten, N., Cinar, Z. and Bekbolet, M., 2017. Application of Fe-doped TiO2 specimens for the solar photocatalytic degradation of humic acid. Catalysis Today, 281: 78-84.
  • Birben, N. C., Uyguner-Demirel, C. S., Sen-Kavurmaci, S., Gurkan, Y. Y., Turkten, N., Cinar, Z. and Bekbolet, M., 2015. Comparative evaluation of anion doped photocatalysts on the mineralization and decolorization of natural organic matter. Catalysis Today, 240, Part A: 125-131.
  • Diebold, U., 2003. The surface science of titanium dioxide. Surface Science Reports, 48 (5-8): 53-229.
  • Fujishima, A. and Honda, K., 1972. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238 (5358): 37-38.
  • Gaya, U. I. and Abdullah, A. H., 2008. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9 (1): 1-12.
  • Guillard, C., Disdier, J., Herrmann, J.-M., Lehaut, C., Chopin, T., Malato, S. and Blanco, J., 1999. Comparison of various titania samples of industrial origin in the solar photocatalytic detoxification of water containing 4-chlorophenol. Catalysis Today, 54 (2–3): 217-228.
  • Gurkan, Y., Kasapbasi, E., Turkten, N. and Cinar, Z., 2017. Influence of Se/N Codoping on the Structural, Optical, Electronic and Photocatalytic Properties of TiO2. Molecules, 22 (3): 414.
  • Gurkan, Y. Y., Kasapbasi, E. and Cinar, Z., 2013. Enhanced solar photocatalytic activity of TiO2 by selenium(IV) ion-doping: Characterization and DFT modeling of the surface. Chemical Engineering Journal, 214: 34-44.
  • Gurkan, Y. Y., Turkten, N., Hatipoglu, A. and Cinar, Z., 2012. Photocatalytic degradation of cefazolin over N-doped TiO2 under UV and sunlight irradiation: Prediction of the reaction paths via conceptual DFT. Chemical Engineering Journal, 184: 113-124.
  • Herrmann, J. M., Guillard, C. and Pichat, P., 1993. Heterogeneous photocatalysis : an emerging technology for water treatment. Catalysis Today, 17 (1): 7-20.
  • Ibhadon, A., Greenway, G. and Yue, Y., 2008. Photocatalytic activity of surface modified TiO2/RuO2/SiO2 nanoparticles for azo-dye degradation. Catalysis Communications, 9 (1): 153-157.
  • Jagadale, T. C., Takale, S. P., Sonawane, R. S., Joshi, H. M., Patil, S. I., Kale, B. B. and Ogale, S. B., 2008. N-Doped TiO2 Nanoparticle Based Visible Light Photocatalyst by Modified Peroxide Sol−Gel Method. The Journal of Physical Chemistry C, 112 (37): 14595-14602.
  • Kang, M., 2003. Synthesis of Fe/TiO2 photocatalyst with nanometer size by solvothermal method and the effect of H2O addition on structural stability and photodecomposition of methanol. Journal of Molecular Catalysis A: Chemical, 197 (1–2): 173-183.
  • Kang, M., 2005. The superhydrophilicity of Al–TiO2 nanometer sized material synthesized using a solvothermal method. Materials Letters, 59 (24-25): 3122-3127.
  • Karakitsou, K. E. and Verykios, X. E., 1993. Effects of Altervalent Cation Doping of Titania on its Performance as a Photocatalyst for Water Cleavage. The Journal of Physical Chemistry, 97 (6): 1184-1189.
  • Kaya, D. and San, N., 2017. Heterogeneous Photocatalytic Degradation of 4-Nitrophenol via TiO2 Surface-Modified with Salicylic Acid. Fresenius Environmental Bulletin, 26 (8): 4953-4962.
  • Kudo, T., Nakamura, Y. and Ruike, A., 2003. Development of rectangular column structured titanium oxide photocatalysts anchored on silica sheets by a wet process. Research on Chemical Intermediates, 29 (6): 631-639.
  • Li, D., Ohashi, N., Hishita, S., Kolodiazhnyi, T. and Haneda, H., 2005. Origin of Visible-Light-Driven Photocatalysis: A Comparative Study on N/F-Doped and N–F-Codoped TiO2 Powders by means of Experimental Characterizations and Theoretical Calculations. Journal of Solid State Chemistry, 178 (11): 3293-3302.
  • Liao, D. L., Badour, C. A. and Liao, B. Q., 2008. Preparation of Nanosized TiO2/ZnO Composite Catalyst and its Photocatalytic Activity for Degradation of Methyl Orange. Journal of Photochemistry and Photobiology A: Chemistry, 194 (1): 11-19.
  • Méndez-Martínez, A. J., Dávila-Jiménez, M. M., Ornelas-Dávila, O., Elizalde-González, M. P., Arroyo-Abad, U., Sirés, I. and Brillas, E., 2012. Electrochemical reduction and oxidation pathways for Reactive Black 5 dye using nickel electrodes in divided and undivided cells. Electrochimica Acta, 59: 140-149.
  • Mills, A. and Le Hunte, S., 1997. An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 108 (1): 1-35.
  • Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T. and Matsumura, M., 2004. Preparation of S-Doped TiO2 Photocatalysts and their Photocatalytic Activities Under Visible Light. Applied Catalysis A: General, 265 (1): 115-121.
  • Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., Dunlop, P. S. M., Hamilton, J. W. J., Byrne, J. A., O'Shea, K., Entezari, M. H. and Dionysiou, D. D., 2012. A Review on the Visible Light Active Titanium dioxide Photocatalysts for Environmental Applications. Applied Catalysis B: Environmental, 125: 331-349.
  • Pichat, P. (1997). Handbook of Heterogeneous Catalysis. in: G. Ertl, H. Knözinger, Wiley–VCH, Weinheim.
  • Sakthivel, S., Janczarek, M. and Kisch, H., 2004. Visible Light Activity and Photoelectrochemical Properties of Nitrogen-Doped TiO2. The Journal of Physical Chemistry B, 108 (50): 19384-19387.
  • Sakthivel, S. and Kisch, H., 2003. Daylight Photocatalysis by Carbon-Modified Titanium Dioxide. Angewandte Chemie International Edition, 42 (40): 4908-4911.
  • Sato, S., Nakamura, R. and Abe, S., 2005. Visible-Light Sensitization of TiO2 Photocatalysts by Wet-Method N Doping. Applied Catalysis A: General, 284 (1–2): 131-137.
  • Suib, S., 2013. New and Future Developments in Catalysis: Solar Photocatalysis Amsterdam, The Netherlands Elsevier.
  • Sun, H., Bai, Y., Cheng, Y., Jin, W. and Xu, N., 2006. Preparation and Characterization of Visible-Light-Driven Carbon−Sulfur-Codoped TiO2 Photocatalysts. Industrial & Engineering Chemistry Research, 45 (14): 4971-4976.
  • Sun, H., Zhou, G., Liu, S., Ang, H. M., Tadé, M. O. and Wang, S., 2013. Visible Light Responsive Titania Photocatalysts Codoped by Nitrogen and Metal (Fe, Ni, Ag, or Pt) for Remediation of Aqueous Pollutants. Chemical Engineering Journal, 231: 18-25.
  • Turkten, N. and Cinar, Z., 2017. Photocatalytic decolorization of azo dyes on TiO2: Prediction of mechanism via conceptual DFT. Catalysis Today, 287: 169-175.
  • Turkten, N., Cinar, Z., Tomruk, A. and Bekbolet, M., 2019. Copper-doped TiO2 photocatalysts: application to drinking water by humic matter degradation. Environ Sci Pollut Res Int.
  • Wang, F. and Min, S. X., 2007. TiO2/polyaniline composites: An efficient photocatalyst for the degradation of methylene blue under natural light. Chinese Chemical Letters, 18 (10): 1273-1277.
  • Wang, S. and Zhou, S., 2010. Titania deposited on soft magnetic activated carbon as a magnetically separable photocatalyst with enhanced activity. Applied Surface Science, 256 (21): 6191-6198.
  • Wellia, D. V., Xu, Q. C., Sk, M. A., Lim, K. H., Lim, T. M. and Tan, T. T. Y., 2011. Experimental and theoretical studies of Fe-doped TiO2 films prepared by peroxo sol–gel method. Applied Catalysis A: General, 401 (1–2): 98-105.
  • Woan, K., Pyrgiotakis, G. and Sigmund, W., 2009. Photocatalytic carbon‐nanotube – TiO2 composites. Advanced Materials, 21 (21): 2233-2239.
  • Xu, T., Kamat, P. V., Joshi, S., Mebel, A. M., Cai, Y. and O'Shea, K. E., 2007. Hydroxyl radical mediated degradation of phenylarsonic acid. J Physical Chemistry A, 111 (32): 7819-7824.
  • Yalçın, Y., Kılıç, M. and Çınar, Z., 2010. Fe+3-doped TiO2: A combined experimental and computational approach to the evaluation of visible light activity. Applied Catalysis B: Environmental, 99 (3-4): 469-477.
  • Yalçın, Y., Kılıç, M. and Çınar, Z., 2010. The Role of Non-Metal Doping in TiO2 Photocatalysis. Journal of Advanced Oxidation Technologies, 13 (3): 281-296.
  • Yu, J., Zhou, M., Cheng, B. and Zhao, X., 2006. Preparation, Characterization and Photocatalytic Activity of in situ N,S-Codoped TiO2 Powders. Journal of Molecular Catalysis A: Chemical, 246 (1–2): 176-184.
  • Yüce, E., Mert, E. H., Krajnc, P., Parın, F. N., San, N., Kaya, D. and Yıldırım, H., 2017. Photocatalytic Activity of Titania/Polydicyclopentadiene PolyHIPE Composites. Macromolecular Materials and Engineering, 302 (10): 1700091.
  • Zhou, M., Yu, J., Cheng, B. and Yu, H., 2005. Preparation and photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts. Materials Chemistry and Physics, 93 (1): 159-163.

KATKILANDIRILMIŞ TiO2 FOTOKATALİZÖRLERİNİN HAZIRLANMASI VE GÜNEŞ IŞIĞI ALTINDA DEKOLORİZASYON VERİMLİLİKLERİ

Yıl 2020, Cilt: 8 Sayı: 3, 655 - 663, 24.09.2020
https://doi.org/10.21923/jesd.672207

Öz

Organik kirleticilerin sulu ortamda bozunmasında etkili olan fotokataliz yöntemi oldukça ilgi çekmektedir. Bu ileri oksidasyon yönteminin esası, hedef molekülün hidroksil radikalleri tarafından yükseltgenmesidir. En yaygın olarak tercih edilen ve güçlü fotokatalizör titanyum dioksittir (TiO2). Ancak bant boşluğu enerjisi nedeniyle güneş ışığı altında sınırlı kullanımı vardır. Bu durum, çeşitli olası uygulamalar için büyük bir dezavantajdır. Bu dezavantajın üstesinden gelmek için, fotokatalizörün bant boşluğunu daraltmak amacıyla metaller ve ametaller ile katkılandırma işlemi uygulanabilmektedir. Bu çalışmada, ıslak aşılama metodunu kullanarak simüle edilmiş solar ışıkta aktif olan fotokatalizörler hazırlanmıştır. Rodamin B ve Kongo Kırmısızı olmak üzere iki farklı boya sınıfının dekolorizasyonu (renginin giderilmesi) işlemi güneş ışığı altında katkılı TiO2 ile yapılmıştır. Ametal katkılı (C, N, Se), metal katkılı (Cu, Fe) ve ikili katkılı (N/S) TiO2 fotokatalizörlerin fotokatalitik performansları UV-vis verilerini takip ederek ve ortamdan uzaklaşma yüzdeleri hesaplanarak incelenmiştir.

Kaynakça

  • Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y., 2001. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 293 (5528): 269-271.
  • Bahnemann, D., 2004. Photocatalytic water treatment: solar energy applications. Solar Energy, 77 (5): 445-459.
  • Bahnemann, D., Cunningham, J., Fox, M., Pelizzetti, E., Pichat, P., Serpone, N., Helz, G., Zepp, R. and Crosby, D., 1994. Aquatic and surface photochemistry. Lewis, Boca Raton, FL: 261.
  • Birben Nazmiye, C., Uyguner-Demirel Ceyda, S., Sen-Kavurmaci, S., Gürkan Yelda, Y., Türkten, N., Kılıç, M., Çınar, Z. and Bekbolet, M., 2016. Photocatalytic Performance of Anion Doped TiO2 on the Degradation of Complex Organic Matrix. Journal of Advanced Oxidation Technologies. 19: 199.
  • Birben, N. C., Uyguner-Demirel, C. S., Kavurmaci, S. S., Gürkan, Y. Y., Turkten, N., Cinar, Z. and Bekbolet, M., 2017. Application of Fe-doped TiO2 specimens for the solar photocatalytic degradation of humic acid. Catalysis Today, 281: 78-84.
  • Birben, N. C., Uyguner-Demirel, C. S., Sen-Kavurmaci, S., Gurkan, Y. Y., Turkten, N., Cinar, Z. and Bekbolet, M., 2015. Comparative evaluation of anion doped photocatalysts on the mineralization and decolorization of natural organic matter. Catalysis Today, 240, Part A: 125-131.
  • Diebold, U., 2003. The surface science of titanium dioxide. Surface Science Reports, 48 (5-8): 53-229.
  • Fujishima, A. and Honda, K., 1972. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238 (5358): 37-38.
  • Gaya, U. I. and Abdullah, A. H., 2008. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9 (1): 1-12.
  • Guillard, C., Disdier, J., Herrmann, J.-M., Lehaut, C., Chopin, T., Malato, S. and Blanco, J., 1999. Comparison of various titania samples of industrial origin in the solar photocatalytic detoxification of water containing 4-chlorophenol. Catalysis Today, 54 (2–3): 217-228.
  • Gurkan, Y., Kasapbasi, E., Turkten, N. and Cinar, Z., 2017. Influence of Se/N Codoping on the Structural, Optical, Electronic and Photocatalytic Properties of TiO2. Molecules, 22 (3): 414.
  • Gurkan, Y. Y., Kasapbasi, E. and Cinar, Z., 2013. Enhanced solar photocatalytic activity of TiO2 by selenium(IV) ion-doping: Characterization and DFT modeling of the surface. Chemical Engineering Journal, 214: 34-44.
  • Gurkan, Y. Y., Turkten, N., Hatipoglu, A. and Cinar, Z., 2012. Photocatalytic degradation of cefazolin over N-doped TiO2 under UV and sunlight irradiation: Prediction of the reaction paths via conceptual DFT. Chemical Engineering Journal, 184: 113-124.
  • Herrmann, J. M., Guillard, C. and Pichat, P., 1993. Heterogeneous photocatalysis : an emerging technology for water treatment. Catalysis Today, 17 (1): 7-20.
  • Ibhadon, A., Greenway, G. and Yue, Y., 2008. Photocatalytic activity of surface modified TiO2/RuO2/SiO2 nanoparticles for azo-dye degradation. Catalysis Communications, 9 (1): 153-157.
  • Jagadale, T. C., Takale, S. P., Sonawane, R. S., Joshi, H. M., Patil, S. I., Kale, B. B. and Ogale, S. B., 2008. N-Doped TiO2 Nanoparticle Based Visible Light Photocatalyst by Modified Peroxide Sol−Gel Method. The Journal of Physical Chemistry C, 112 (37): 14595-14602.
  • Kang, M., 2003. Synthesis of Fe/TiO2 photocatalyst with nanometer size by solvothermal method and the effect of H2O addition on structural stability and photodecomposition of methanol. Journal of Molecular Catalysis A: Chemical, 197 (1–2): 173-183.
  • Kang, M., 2005. The superhydrophilicity of Al–TiO2 nanometer sized material synthesized using a solvothermal method. Materials Letters, 59 (24-25): 3122-3127.
  • Karakitsou, K. E. and Verykios, X. E., 1993. Effects of Altervalent Cation Doping of Titania on its Performance as a Photocatalyst for Water Cleavage. The Journal of Physical Chemistry, 97 (6): 1184-1189.
  • Kaya, D. and San, N., 2017. Heterogeneous Photocatalytic Degradation of 4-Nitrophenol via TiO2 Surface-Modified with Salicylic Acid. Fresenius Environmental Bulletin, 26 (8): 4953-4962.
  • Kudo, T., Nakamura, Y. and Ruike, A., 2003. Development of rectangular column structured titanium oxide photocatalysts anchored on silica sheets by a wet process. Research on Chemical Intermediates, 29 (6): 631-639.
  • Li, D., Ohashi, N., Hishita, S., Kolodiazhnyi, T. and Haneda, H., 2005. Origin of Visible-Light-Driven Photocatalysis: A Comparative Study on N/F-Doped and N–F-Codoped TiO2 Powders by means of Experimental Characterizations and Theoretical Calculations. Journal of Solid State Chemistry, 178 (11): 3293-3302.
  • Liao, D. L., Badour, C. A. and Liao, B. Q., 2008. Preparation of Nanosized TiO2/ZnO Composite Catalyst and its Photocatalytic Activity for Degradation of Methyl Orange. Journal of Photochemistry and Photobiology A: Chemistry, 194 (1): 11-19.
  • Méndez-Martínez, A. J., Dávila-Jiménez, M. M., Ornelas-Dávila, O., Elizalde-González, M. P., Arroyo-Abad, U., Sirés, I. and Brillas, E., 2012. Electrochemical reduction and oxidation pathways for Reactive Black 5 dye using nickel electrodes in divided and undivided cells. Electrochimica Acta, 59: 140-149.
  • Mills, A. and Le Hunte, S., 1997. An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 108 (1): 1-35.
  • Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T. and Matsumura, M., 2004. Preparation of S-Doped TiO2 Photocatalysts and their Photocatalytic Activities Under Visible Light. Applied Catalysis A: General, 265 (1): 115-121.
  • Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., Dunlop, P. S. M., Hamilton, J. W. J., Byrne, J. A., O'Shea, K., Entezari, M. H. and Dionysiou, D. D., 2012. A Review on the Visible Light Active Titanium dioxide Photocatalysts for Environmental Applications. Applied Catalysis B: Environmental, 125: 331-349.
  • Pichat, P. (1997). Handbook of Heterogeneous Catalysis. in: G. Ertl, H. Knözinger, Wiley–VCH, Weinheim.
  • Sakthivel, S., Janczarek, M. and Kisch, H., 2004. Visible Light Activity and Photoelectrochemical Properties of Nitrogen-Doped TiO2. The Journal of Physical Chemistry B, 108 (50): 19384-19387.
  • Sakthivel, S. and Kisch, H., 2003. Daylight Photocatalysis by Carbon-Modified Titanium Dioxide. Angewandte Chemie International Edition, 42 (40): 4908-4911.
  • Sato, S., Nakamura, R. and Abe, S., 2005. Visible-Light Sensitization of TiO2 Photocatalysts by Wet-Method N Doping. Applied Catalysis A: General, 284 (1–2): 131-137.
  • Suib, S., 2013. New and Future Developments in Catalysis: Solar Photocatalysis Amsterdam, The Netherlands Elsevier.
  • Sun, H., Bai, Y., Cheng, Y., Jin, W. and Xu, N., 2006. Preparation and Characterization of Visible-Light-Driven Carbon−Sulfur-Codoped TiO2 Photocatalysts. Industrial & Engineering Chemistry Research, 45 (14): 4971-4976.
  • Sun, H., Zhou, G., Liu, S., Ang, H. M., Tadé, M. O. and Wang, S., 2013. Visible Light Responsive Titania Photocatalysts Codoped by Nitrogen and Metal (Fe, Ni, Ag, or Pt) for Remediation of Aqueous Pollutants. Chemical Engineering Journal, 231: 18-25.
  • Turkten, N. and Cinar, Z., 2017. Photocatalytic decolorization of azo dyes on TiO2: Prediction of mechanism via conceptual DFT. Catalysis Today, 287: 169-175.
  • Turkten, N., Cinar, Z., Tomruk, A. and Bekbolet, M., 2019. Copper-doped TiO2 photocatalysts: application to drinking water by humic matter degradation. Environ Sci Pollut Res Int.
  • Wang, F. and Min, S. X., 2007. TiO2/polyaniline composites: An efficient photocatalyst for the degradation of methylene blue under natural light. Chinese Chemical Letters, 18 (10): 1273-1277.
  • Wang, S. and Zhou, S., 2010. Titania deposited on soft magnetic activated carbon as a magnetically separable photocatalyst with enhanced activity. Applied Surface Science, 256 (21): 6191-6198.
  • Wellia, D. V., Xu, Q. C., Sk, M. A., Lim, K. H., Lim, T. M. and Tan, T. T. Y., 2011. Experimental and theoretical studies of Fe-doped TiO2 films prepared by peroxo sol–gel method. Applied Catalysis A: General, 401 (1–2): 98-105.
  • Woan, K., Pyrgiotakis, G. and Sigmund, W., 2009. Photocatalytic carbon‐nanotube – TiO2 composites. Advanced Materials, 21 (21): 2233-2239.
  • Xu, T., Kamat, P. V., Joshi, S., Mebel, A. M., Cai, Y. and O'Shea, K. E., 2007. Hydroxyl radical mediated degradation of phenylarsonic acid. J Physical Chemistry A, 111 (32): 7819-7824.
  • Yalçın, Y., Kılıç, M. and Çınar, Z., 2010. Fe+3-doped TiO2: A combined experimental and computational approach to the evaluation of visible light activity. Applied Catalysis B: Environmental, 99 (3-4): 469-477.
  • Yalçın, Y., Kılıç, M. and Çınar, Z., 2010. The Role of Non-Metal Doping in TiO2 Photocatalysis. Journal of Advanced Oxidation Technologies, 13 (3): 281-296.
  • Yu, J., Zhou, M., Cheng, B. and Zhao, X., 2006. Preparation, Characterization and Photocatalytic Activity of in situ N,S-Codoped TiO2 Powders. Journal of Molecular Catalysis A: Chemical, 246 (1–2): 176-184.
  • Yüce, E., Mert, E. H., Krajnc, P., Parın, F. N., San, N., Kaya, D. and Yıldırım, H., 2017. Photocatalytic Activity of Titania/Polydicyclopentadiene PolyHIPE Composites. Macromolecular Materials and Engineering, 302 (10): 1700091.
  • Zhou, M., Yu, J., Cheng, B. and Yu, H., 2005. Preparation and photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts. Materials Chemistry and Physics, 93 (1): 159-163.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Mühendisliği, Kimya Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Dila Kaya 0000-0003-1607-5317

Nazlı Türkten 0000-0001-9343-3697

Yayımlanma Tarihi 24 Eylül 2020
Gönderilme Tarihi 8 Ocak 2020
Kabul Tarihi 21 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 8 Sayı: 3

Kaynak Göster

APA Kaya, D., & Türkten, N. (2020). PREPARATION OF DOPED TiO2 PHOTOCATALYSTS AND THEIR DECOLORIZATION EFFICIENCIES UNDER SOLAR LIGHT. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(3), 655-663. https://doi.org/10.21923/jesd.672207