Derleme
BibTex RIS Kaynak Göster

ORGANİK ATIKLARIN YAPI MALZEMESİ OLARAK KULLANABİLİRLİĞİNİN ARAŞTIRILMASI

Yıl 2020, Cilt: 8 Sayı: 4, 1303 - 1311, 25.12.2020
https://doi.org/10.21923/jesd.781554

Öz

Küresel ısınmayla birlikte çevresel sorunlara olan ilgi son on yıllarda giderek artmıştır. Küresel ısınmanın en önemli nedeni sanayileşme ile birlikte giderek artan CO2 salınımıdır. Sanayileşme ile birlikte gelişen kentlerin altyapı ve üst yapılarının inşasında ana girdi beton ve buna bağlı olarak çimento üretimi gelmektedir. Çimento fabrikalarında, üretim prosesinde ortaya çıkan CO2 ve partiküller hava kirleticileri arasında ilk sıralarda yer almakta, büyük oranda atmosfere sera gazı salınımı yapmaktadır. Küreselleşen Dünyada sanayileşme ve kentleşmenin etkisiyle birlikte kaynakların aşırı kullanımı ve artan tüketim sonucu atık miktarı da sürekli artış göstermektedir. Gittikçe katlanarak büyümekte olan atık sorunu; toplumu, aileyi ve bireyi etkilemekte hayat kalitesini olumsuz etkilemektedir. Atık sorununu çözmek için, toplanan materyallerin yeniden işlenmesi, üretimde kullanılması olan geri dönüşüm, bir zorunluluk olarak günümüz Dünyasında önemli yer tutar. Organik atıklar arasında: tarımsal atıklar, fıstık kabuğu, fındık kabuğu, pirinç kabuğu, şeker kamışı, palmiye yağı, saman, çay artıkları, pamuk sapı, ayçiçeği sapı, mısır koçanı, pamuk ve tekstil atıkları, odun lifleri vb yer almaktadır. Bu çalışmada, organik kökenli atıkların yapı malzemeleri üretiminde kullanılabilirliği üzerine yapılan çalışmalar değerlendirilmiştir. Çalışmada, birçok atık türünden (tarım, evsel, tıbbi, sanayi, santral, vb.) organik kökenli atıklar seçilerek, yapı malzemesi üretiminde tekrar kullanılması veya geri dönüşümü ile kaynak kullanımının ve bertaraf oranını azaltarak çevrenin korunmasına katkı sağlanabileceği ortaya konmuştur.

Kaynakça

  • Agbede, I.O., Joel, M., 2011. Effect of rice husk ash (RHA) on the properties of Ibaji burnt clay bricks. American Journal of Scientific and Industrial Research, 2, 674-677.
  • Akeke, G.A., Ephraim, M.E. and Ukpata, J.O., 2013. Structural properties of rice husk ash concrete. International Journal of Engineering and Applied Sciences, 3, 57–62.
  • Alabadan, B.A., Olutoye, M.A., Abolarin, M.S. and Zakariya, M., 2005. Partial replacement of Ordinary Portland Cement (OPC) with Bambara Groundnut Shell Ash (BGSA) in concrete. Leonardo Electronic Journal of Practices and Technologies, 6, 43–48.
  • Anonymous, N.D., 1974. Wood-Cement Building Boards, Bison System Board Plants, Bison-Werke, Springer, W. Germany.
  • Aprianti, E., Shafigh, P., Bahri, S., Farahani, J.N., 2015. Supplementary cementitious materials origin from agricultural wastese-A review, Constr. Build. Mater. 74, 176-187.
  • Baluch, H., Ziraba, Y.N., Azad, A.K., 1987. Fracture characteristics of sisal fibre reinforced concrete. The International Journal of Cement Composites and Lightweight Concrete, 9, 157-168.
  • Binici, H., Eken, M., Dolaz, M., Aksogan, O., Kara, M., 2014. An environmentally friendly thermal insulation material from sunflower stalk, textile waste and stubble fibres. Construction and Building Materials, 51, 24–33.
  • Binici, H., Yucegok, F., Aksogan, O., Kaplan, H.., 2008. Effect of corncob, wheat straw and plane leaf ashes as mineral admixtures on concrete durability. ASCE, Civ Eng Mater., 20, 478–483.
  • Bolat, M., 2005. Use of biomass sources for energy in Turkey and a view to biomass potential. Biomass Bioenergy, 29, 32–41.
  • Buari, T.A., Ademola, S.A. and Ayegbokiki, S.T., 2013. Characteristics Strength of groundnut shell ash (GSA) and Ordinary Portland cement (OPC) blended Concrete in Nigeria. IOSRJEN, 3, 1–7.
  • Canovas, M.F., Selva, N.H., Kawiche, G.M., 1992. New economical solutions for improvement of durability of Portland cement mortars reinforced with sisal fibres. Materials and Structures, 25, 417-422.
  • Chatveera, B., Lertwattanaruk, P., 2009. Evaluation of sulfate resistance of cement mortars containing black rice husk ash. Journal of Environmental Management, 90, 1435-1441.
  • Chatveera, B., Nimityongskul, P., Tansriprapasiri, W., Seehabuth, P., 2005. Development of sisal fiber reinforced roofing sheets. AGRIS, 4, 44-61.
  • Chindaprasirta, P., Homwuttiwongb, S., Jaturapitakkulb, C., 2007. Strength and water permeability of concrete containing palm oil fuel ash and rice husk–bark ash. Construction and Building Materials, 21, 1492-1499.
  • Chindaprasirta, P., Rukzona, S., Sirivivatnanonb, V., 2008. Resistance to chloride penetration of blended Portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash. Construction and Building Materials, 22, 932-938.
  • Cook, D.J., 1984. Development of microstructure and other properties in rice husk ash–OPC systems. Australasian Conference on the Mechanics of Structures and Materials, 9th, 1984, Sydney, Australia, 355–360.
  • Çimento Sektörü Raporu, 2018. Sanayi ve Verimlilik Genel Müdürlüğü Sektörel Raporlar Ve Analizler Serisi, Çimento Raporu.
  • Demir, İ., 2006. An investigation on the production of construction brick with processed waste tea. Building and Environment, 41, 1274–1278.
  • Demir, I., Baspınar M.S. and Orhan M., 2005. Utilization of kraft pulp production residues in clay brick production. Building and Environment, 40, 1533–1537.
  • Demir, İ., 2008. Effect of organic residues addition on the technological properties of clay bricks. Waste Management, 28, 622–627.
  • Demirbas, A. and Aslan, A., 1998. Effects of ground hazelnut shell, wood, and tea waste on the mechanical properties of cement. Cement and Concrete Research, 28, 1101–1104.
  • Duggal, P., Yadav, B., Choudhry H., Springer, A. G. 2020. Comparative Analysis of Cement Mortar Roof Tiles Using Agricultural Waste. Nature Singapore Pte, Advances in Structural Engineering and Rehabilitation, Lecture Notes in Civil Engineering.
  • Gündüzalp, A.A., Güven, S., 2016. Atık, Çeşitleri, Atık Yönetimi, Geri Dönüşüm ve Tüketici: Çankaya Belediyesi ve Semt Tüketicileri Örneği. Hacettepe Üniversitesi Sosyolojik Araştırmalar E-Dergisi.
  • Gürel B., 2020. Türkiye’deki güncel biyokütle potansiyelinin belirlenmesi ve yakılmasıyla enerji üretimi iyi bir alternatif olan biyokütle atıklar için sektörel açıdan ve toplam yanma enerji değerlerinin hesaplanması, Mühendislik Bilimleri ve Tasarım Dergisi 8(2), 407 – 416.
  • James, J., Rao, M.S., 1986. Reactivity of rice husk ash. Cement and Concrete Research, 16, 296–302.
  • James, J., Rao, M.S., 1986. Characterization of silica in rice husk ash. American Ceramic Society Bulletin, 65, 1177–1180.
  • Karade, S.R., 2010. Cement-bonded composites from lignocellulosic wastes. Construction and Building Materials, 24, 1323–1330.,
  • Kartalkanat, A., 2010. Çimento fabrikalarının çevreye muhtemel etkileri, online website. İnternet erişimi: http://www.ovamadokunma.com/index.php/makaleler/okuyucu-makaleleri/105-cimento-fabrikalarnn-cevreye-muhtemel-etkileri
  • Khabir, L., Huda, M., Amin, R., Kamruzzaman, S., 2013. Energy Saving Brick from Rice Husk Ash. International Conference Mechanical, Industrial and Materials Engineering, Rajshahi, Bangladesh, 222-226.
  • Khan R., Jabbar A., Ahmad I., Akhtar Naeem Khan A. N., 2012. Reduction in environmental problems using rice-husk ash in concrete, Constr. Build. Mater. 30, 360-365
  • Khedari, J., Nankongnab, N., Hirunlabh, J. and S. Teekasap 2004. New low-cost insulation particleboards from mixture of durian peel and coconut coir. Building and Environment, 39, 59–65.
  • Khorami, M. and Ganjian E., 2011. Comparing flexural behaviour of fibre–cement composites reinforced bagasse: Wheat and eucalyptus. Construction and Building Materials, 25, 3661–3667.
  • Kishore, R., Bhikshma V. and Prakash P.J., 2011. Study on Strength Characteristics of High Strength Rice Husk Ash Concrete. Procedia Engineering, 14, 2666–2672.
  • Kraiwood, K., Chai, J., Smith, S., Seksun, C., 2001. A study of ground coarse fly ashes with different finenesses from various sources as pozzolanic materials. Cement and Concrete Composites, 23, 335–343.
  • Le H.T., Nguyen S.T.,. Ludwig H.-M., 2014. A study on high performance fine-grained concrete containing rice husk ash, International Journal of Concrete Structures and Materials 8 (4), 301-307.
  • Lertsutthiwong, P., Khunthon, S., Siralertmukul, K., Noomun, K. and Chandrkrachang, S., 2008. New insulating particleboards prepared from mixture of solid wastes from tissue paper manufacturing and corn peel. Bioresource Technology, 99, 4841–4845.
  • Lima, P.R.L., Santos, R.J., Ferreira, S.R. and Tolêdo, F.R.D., 2014. Characterization and treatment of sisal fiber residues for cement-based composite application. Engenharia Agrícola, 34, 812–825.
  • Liu, D., Song, J.,Debbie, P. A., Peter, R. C. and, Yan, H., (2012), Bamboo fiber and its reinforced composites: structure and properties, Cellulose 19:1449–1480
  • Mahmoud, H., Belel, Z.A. and Nwakaire, C., 2012. Groundnut shell ash as a partial replacement of cement in sandcrete blocks production. International Journal of Development and Sustainability, 1, 1026–1032.
  • Malhotra, V.M., Mehta, P.K., 2004. Pozzolanic and cementitious materials. Advances in concrete technolog, Gordon and Breach Science Publishers.
  • Mehta, P.K., 1978. Siliceous ashes and hydraulic cements prepared therefrom. US Patent 4105459A.
  • Mehta, P.K., Folliard, K.J., 1995. Rice-husk ash-a unique supplementary cementing material. Materials Science, 154, 531–542.
  • Nwofor, T.C. and Sule, S., 2012. Stability of groundnut shell ash (GSA)/ordinary portland cement (OPC) concrete in Nigeria. Advances in Applied Science Research, 3, 2283–2287.
  • Oyetola, E. B. and Abdullahi, M., 2006. The Use of Rice Husk Ash in Low-Cost Sandcrete Block Production. Leonardo Electronic Journal of Practices and Technologies, 8, 58–70.
  • Öner, M.N.K., 2019. Tarım Atıklarının Geri Dönüştürülmesi: Yalova İli Tarımsal Atık Yönetimi, Mühendislikte Yeni Yaklaşımlar, s 86-97.
  • Özyurt, H . 2020. Design and properties of composite sustainable building material by using waste (HDPE). Mühendislik Bilimleri ve Tasarım Dergisi , 8 (3), 777-782 .
  • Paiva, A., Pereira, S., Sá. A., Cruza, D., Varum, H. and Pinto, J., 2012. A contribution to the thermal insulation performance characterization of corn cob particleboards. Energy and Buildings, 45, 274–279.
  • Pappua, A., Saxenaa, M., Asolekarb, S.R., 2007. Solid wastes generation in India and their recycling potential in building materials. Building and Environment, 42, 2311–2320.
  • Paya, J., Monzo, J., Peris-Mora, E., Borrachero, M.V., Tercero, R., Pinillos, C., 1995. Early-strength development of Portland cement mortars containing air classified fly ashes. Cement and Concrete Research, 25, 449–456.
  • Paya, J., Monzo, J., Borrachero, M.V., Peris, E., Gonzalez-Lopez, E., 1997. Mechanical treatment of fly ashes. Part III: studies on strength development on ground fly ash cement mortars. Cement and Concrete Research, 27, 1365–1377.
  • Pereira, C.L., Savastano, H.Jr., Payá, J., Santos, S.F., Borrachero, M.V., Monzó, J. and Soriano, L., 2013. Use of highly reactive rice husk ash in the production of cement matrix reinforced with green coconut fiber. Industrial Crops and Products, 49, 88–96.
  • Pinto, J., Vieira, B., Pereira, H., Jacinto, C., Vilela, P., Paiva, A., Pereira, S., Cunha, V.M.C.F. and Varum H., 2012. Corn cob lightweight concrete for non-structural applications. Construction and Building Materials, 34, 346–351.
  • Pone, J., Ash, A., Kamau, J. and Hyndman, F., 2018, Palm Oil Fuel Ash as A Cement Replacement in Concrete. Modern Approaches on Material Science, 1, 4-8.
  • Reddy, S., Reddy, R. and Songkasupa, P., 2018. Evaluation of Mechanical Properties of Cement Concrete Pavement Using Granite Dust and Baggage Ash. International Journal of Applied Engineering Research, 13, 187–192.
  • RILEM Committee 73-SBC, 1988. Final report: siliceous by-products for use in concrete. Materials and Structures, 21, 69–80.
  • Sandermann W. and Kohler, R., 1964. Holzforschung 18, 53.
  • Sangeetha, S. P., 2016. Rice Husk Ash Sandcrete Block as Low Cost Building Material. Int. Journal of Engineering Research and Application, 6, 46-49.
  • Saraswathy, V. and Song, H., 2007. Corrosion performance of rice husk ash blended concrete. Construction and Building Materials, 21, 1779–1784.
  • Sensale, G.R., 2006. Strength development of concrete with rice-husk ash. Cement & Concrete Composites, 28, 158–160.
  • Sobuz, H. R., Hasan, N. Md. S., Tamanna, N. and Islam, S. 2014. Structural Lightweight Concrete Production by Using Oil Palm Shell. Hindawi Publishing Corporation Journal of Materials, 2014, 1-6.
  • Sooksaen, P., Boodpha, V., Janrawang, P. and Songkasupa, P., 2018. Fabrication of Lightweight Concrete Composites Using Natural Fibers in Thailand. Engineering Materials, 765, 305–308.
  • Takano, R., Kayahara, M. and Nakagawa, H., 1977. Fukui-Ken Mokuzai Shikenjo 31, 1.
  • Tangchirapat, W., Saeting, T., Jaturapitakkul, C., Kiattikomol, K., Siripanichgorn, A., 2007. Use of waste ash from palm oil industry in concrete. Waste Management, 27, 81-88.
  • Tangjuank, S., 2011. Thermal insulation and physical properties of particleboards from pineapple leaves. International Journal of Physical Sciences, 6, 4528–4532.
  • Tolêdo, F.R.D., Kuruvilla J., Khosrow G. and England, G.L., 1999. The use of sisal fibre as reinforcement in cement based composites. Revista Brasileira de Engenharia Agrícola e Ambiental, 3, 245–256.
  • Xu, J.Y., Sugawara, R., Widyorini, R., Han, G.P. and Kawai, S., 2004. Manufacture and properties of low-density binderless particleboard from kenaf core. Journal of Wood Science, 50, 62–67.
  • Yalinkilic, M.K., Imamura, Y., Takahashi, M., Kalaycioglu, H., Nemli, G., Demirci, Z., Ozdemir, T., 1998. Biological, physical and mechanical properties of particleboard manufactured from waste tea leaves. International Biodeterioration & Biodegradation, 41, 75-84.
  • Yashwanth, M.K. and Nagarjuna, P., 2016. An Experimental Study on Synergic Effect of Sugar Cane Baggage Ash and Fly Ash in Concrete. International Journal for Innovative Research in Science & Technology, 3, 174–178.
  • Yoshizawa, S., Tanaka, M., Shekdar, A.V., 2004. Global trends in waste generation. Recycling, waste treatment and clean technology, 1541–1552.
  • Zhou, X., Zheng, F., Li, H. and Lu, C., 2010. An environment-friendly thermal insulation material from cotton stalk fibers. Energy and Buildings, 42, 1070–1074.
  • Zhou, X.Y., Li, J. and Zhou, D.G., 2004. Thermal transfer properties of low density wheat strawboard. Journal of Nanjing Forestry University, 28, 1–4.
  • Zhu, W.H., Tobias, B.C., Coutts, R.S.P. and Langfors, G., 1994. Air-Cured Banana-Fibre-Reinforced Cement Composites. Cement & Concrete Composites, 16, 3-8.

INVESTIGATION OF THE USABILITY OF ORGANIC WASTES AS A BUILDING MATERIAL

Yıl 2020, Cilt: 8 Sayı: 4, 1303 - 1311, 25.12.2020
https://doi.org/10.21923/jesd.781554

Öz

With global warming, the interest in environmental problems has been increased steadily in the last decades. The most important cause of global warming is the increasingly CO2 emission with industrialization. The main input in the construction of the infrastructure and superstructure of the cities that developed with the industrialization is concrete and accordingly cement production. In cement factories, emerging in the production process CO2 and particles are among the top air pollutants, emitting greenhouse gases to the atmosphere to a large extent. With the effect of industrialization and urbanization, the amount of waste increases continuously as a result of excessive use of resources and increasing consumption in the globalizing world. Waste problem that is growing exponentially; It has been affects the society, family and individual, and its negatively affects the quality of life. To solve the waste problem, recycling, which is the reprocessing of collected materials and their use in production, has an important mission in today's world as a necessity. Organic waste includes: agricultural wastes, peanut shell, nutshell, rice husk, sugar cane, palm oil, straw, tea scraps, cotton stalk, sunflower stalk, corn cob, cotton and textile wastes, wood fibers, etc. In this study, studies on the usability of organic wastes in the production of building materials were evaluated. In the study, it has been revealed that by selecting organic origin wastes, reusing or recycling in building material production, it has been shown that it can contribute to the protection of the environment by reducing the rate of resource use and disposal.

Kaynakça

  • Agbede, I.O., Joel, M., 2011. Effect of rice husk ash (RHA) on the properties of Ibaji burnt clay bricks. American Journal of Scientific and Industrial Research, 2, 674-677.
  • Akeke, G.A., Ephraim, M.E. and Ukpata, J.O., 2013. Structural properties of rice husk ash concrete. International Journal of Engineering and Applied Sciences, 3, 57–62.
  • Alabadan, B.A., Olutoye, M.A., Abolarin, M.S. and Zakariya, M., 2005. Partial replacement of Ordinary Portland Cement (OPC) with Bambara Groundnut Shell Ash (BGSA) in concrete. Leonardo Electronic Journal of Practices and Technologies, 6, 43–48.
  • Anonymous, N.D., 1974. Wood-Cement Building Boards, Bison System Board Plants, Bison-Werke, Springer, W. Germany.
  • Aprianti, E., Shafigh, P., Bahri, S., Farahani, J.N., 2015. Supplementary cementitious materials origin from agricultural wastese-A review, Constr. Build. Mater. 74, 176-187.
  • Baluch, H., Ziraba, Y.N., Azad, A.K., 1987. Fracture characteristics of sisal fibre reinforced concrete. The International Journal of Cement Composites and Lightweight Concrete, 9, 157-168.
  • Binici, H., Eken, M., Dolaz, M., Aksogan, O., Kara, M., 2014. An environmentally friendly thermal insulation material from sunflower stalk, textile waste and stubble fibres. Construction and Building Materials, 51, 24–33.
  • Binici, H., Yucegok, F., Aksogan, O., Kaplan, H.., 2008. Effect of corncob, wheat straw and plane leaf ashes as mineral admixtures on concrete durability. ASCE, Civ Eng Mater., 20, 478–483.
  • Bolat, M., 2005. Use of biomass sources for energy in Turkey and a view to biomass potential. Biomass Bioenergy, 29, 32–41.
  • Buari, T.A., Ademola, S.A. and Ayegbokiki, S.T., 2013. Characteristics Strength of groundnut shell ash (GSA) and Ordinary Portland cement (OPC) blended Concrete in Nigeria. IOSRJEN, 3, 1–7.
  • Canovas, M.F., Selva, N.H., Kawiche, G.M., 1992. New economical solutions for improvement of durability of Portland cement mortars reinforced with sisal fibres. Materials and Structures, 25, 417-422.
  • Chatveera, B., Lertwattanaruk, P., 2009. Evaluation of sulfate resistance of cement mortars containing black rice husk ash. Journal of Environmental Management, 90, 1435-1441.
  • Chatveera, B., Nimityongskul, P., Tansriprapasiri, W., Seehabuth, P., 2005. Development of sisal fiber reinforced roofing sheets. AGRIS, 4, 44-61.
  • Chindaprasirta, P., Homwuttiwongb, S., Jaturapitakkulb, C., 2007. Strength and water permeability of concrete containing palm oil fuel ash and rice husk–bark ash. Construction and Building Materials, 21, 1492-1499.
  • Chindaprasirta, P., Rukzona, S., Sirivivatnanonb, V., 2008. Resistance to chloride penetration of blended Portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash. Construction and Building Materials, 22, 932-938.
  • Cook, D.J., 1984. Development of microstructure and other properties in rice husk ash–OPC systems. Australasian Conference on the Mechanics of Structures and Materials, 9th, 1984, Sydney, Australia, 355–360.
  • Çimento Sektörü Raporu, 2018. Sanayi ve Verimlilik Genel Müdürlüğü Sektörel Raporlar Ve Analizler Serisi, Çimento Raporu.
  • Demir, İ., 2006. An investigation on the production of construction brick with processed waste tea. Building and Environment, 41, 1274–1278.
  • Demir, I., Baspınar M.S. and Orhan M., 2005. Utilization of kraft pulp production residues in clay brick production. Building and Environment, 40, 1533–1537.
  • Demir, İ., 2008. Effect of organic residues addition on the technological properties of clay bricks. Waste Management, 28, 622–627.
  • Demirbas, A. and Aslan, A., 1998. Effects of ground hazelnut shell, wood, and tea waste on the mechanical properties of cement. Cement and Concrete Research, 28, 1101–1104.
  • Duggal, P., Yadav, B., Choudhry H., Springer, A. G. 2020. Comparative Analysis of Cement Mortar Roof Tiles Using Agricultural Waste. Nature Singapore Pte, Advances in Structural Engineering and Rehabilitation, Lecture Notes in Civil Engineering.
  • Gündüzalp, A.A., Güven, S., 2016. Atık, Çeşitleri, Atık Yönetimi, Geri Dönüşüm ve Tüketici: Çankaya Belediyesi ve Semt Tüketicileri Örneği. Hacettepe Üniversitesi Sosyolojik Araştırmalar E-Dergisi.
  • Gürel B., 2020. Türkiye’deki güncel biyokütle potansiyelinin belirlenmesi ve yakılmasıyla enerji üretimi iyi bir alternatif olan biyokütle atıklar için sektörel açıdan ve toplam yanma enerji değerlerinin hesaplanması, Mühendislik Bilimleri ve Tasarım Dergisi 8(2), 407 – 416.
  • James, J., Rao, M.S., 1986. Reactivity of rice husk ash. Cement and Concrete Research, 16, 296–302.
  • James, J., Rao, M.S., 1986. Characterization of silica in rice husk ash. American Ceramic Society Bulletin, 65, 1177–1180.
  • Karade, S.R., 2010. Cement-bonded composites from lignocellulosic wastes. Construction and Building Materials, 24, 1323–1330.,
  • Kartalkanat, A., 2010. Çimento fabrikalarının çevreye muhtemel etkileri, online website. İnternet erişimi: http://www.ovamadokunma.com/index.php/makaleler/okuyucu-makaleleri/105-cimento-fabrikalarnn-cevreye-muhtemel-etkileri
  • Khabir, L., Huda, M., Amin, R., Kamruzzaman, S., 2013. Energy Saving Brick from Rice Husk Ash. International Conference Mechanical, Industrial and Materials Engineering, Rajshahi, Bangladesh, 222-226.
  • Khan R., Jabbar A., Ahmad I., Akhtar Naeem Khan A. N., 2012. Reduction in environmental problems using rice-husk ash in concrete, Constr. Build. Mater. 30, 360-365
  • Khedari, J., Nankongnab, N., Hirunlabh, J. and S. Teekasap 2004. New low-cost insulation particleboards from mixture of durian peel and coconut coir. Building and Environment, 39, 59–65.
  • Khorami, M. and Ganjian E., 2011. Comparing flexural behaviour of fibre–cement composites reinforced bagasse: Wheat and eucalyptus. Construction and Building Materials, 25, 3661–3667.
  • Kishore, R., Bhikshma V. and Prakash P.J., 2011. Study on Strength Characteristics of High Strength Rice Husk Ash Concrete. Procedia Engineering, 14, 2666–2672.
  • Kraiwood, K., Chai, J., Smith, S., Seksun, C., 2001. A study of ground coarse fly ashes with different finenesses from various sources as pozzolanic materials. Cement and Concrete Composites, 23, 335–343.
  • Le H.T., Nguyen S.T.,. Ludwig H.-M., 2014. A study on high performance fine-grained concrete containing rice husk ash, International Journal of Concrete Structures and Materials 8 (4), 301-307.
  • Lertsutthiwong, P., Khunthon, S., Siralertmukul, K., Noomun, K. and Chandrkrachang, S., 2008. New insulating particleboards prepared from mixture of solid wastes from tissue paper manufacturing and corn peel. Bioresource Technology, 99, 4841–4845.
  • Lima, P.R.L., Santos, R.J., Ferreira, S.R. and Tolêdo, F.R.D., 2014. Characterization and treatment of sisal fiber residues for cement-based composite application. Engenharia Agrícola, 34, 812–825.
  • Liu, D., Song, J.,Debbie, P. A., Peter, R. C. and, Yan, H., (2012), Bamboo fiber and its reinforced composites: structure and properties, Cellulose 19:1449–1480
  • Mahmoud, H., Belel, Z.A. and Nwakaire, C., 2012. Groundnut shell ash as a partial replacement of cement in sandcrete blocks production. International Journal of Development and Sustainability, 1, 1026–1032.
  • Malhotra, V.M., Mehta, P.K., 2004. Pozzolanic and cementitious materials. Advances in concrete technolog, Gordon and Breach Science Publishers.
  • Mehta, P.K., 1978. Siliceous ashes and hydraulic cements prepared therefrom. US Patent 4105459A.
  • Mehta, P.K., Folliard, K.J., 1995. Rice-husk ash-a unique supplementary cementing material. Materials Science, 154, 531–542.
  • Nwofor, T.C. and Sule, S., 2012. Stability of groundnut shell ash (GSA)/ordinary portland cement (OPC) concrete in Nigeria. Advances in Applied Science Research, 3, 2283–2287.
  • Oyetola, E. B. and Abdullahi, M., 2006. The Use of Rice Husk Ash in Low-Cost Sandcrete Block Production. Leonardo Electronic Journal of Practices and Technologies, 8, 58–70.
  • Öner, M.N.K., 2019. Tarım Atıklarının Geri Dönüştürülmesi: Yalova İli Tarımsal Atık Yönetimi, Mühendislikte Yeni Yaklaşımlar, s 86-97.
  • Özyurt, H . 2020. Design and properties of composite sustainable building material by using waste (HDPE). Mühendislik Bilimleri ve Tasarım Dergisi , 8 (3), 777-782 .
  • Paiva, A., Pereira, S., Sá. A., Cruza, D., Varum, H. and Pinto, J., 2012. A contribution to the thermal insulation performance characterization of corn cob particleboards. Energy and Buildings, 45, 274–279.
  • Pappua, A., Saxenaa, M., Asolekarb, S.R., 2007. Solid wastes generation in India and their recycling potential in building materials. Building and Environment, 42, 2311–2320.
  • Paya, J., Monzo, J., Peris-Mora, E., Borrachero, M.V., Tercero, R., Pinillos, C., 1995. Early-strength development of Portland cement mortars containing air classified fly ashes. Cement and Concrete Research, 25, 449–456.
  • Paya, J., Monzo, J., Borrachero, M.V., Peris, E., Gonzalez-Lopez, E., 1997. Mechanical treatment of fly ashes. Part III: studies on strength development on ground fly ash cement mortars. Cement and Concrete Research, 27, 1365–1377.
  • Pereira, C.L., Savastano, H.Jr., Payá, J., Santos, S.F., Borrachero, M.V., Monzó, J. and Soriano, L., 2013. Use of highly reactive rice husk ash in the production of cement matrix reinforced with green coconut fiber. Industrial Crops and Products, 49, 88–96.
  • Pinto, J., Vieira, B., Pereira, H., Jacinto, C., Vilela, P., Paiva, A., Pereira, S., Cunha, V.M.C.F. and Varum H., 2012. Corn cob lightweight concrete for non-structural applications. Construction and Building Materials, 34, 346–351.
  • Pone, J., Ash, A., Kamau, J. and Hyndman, F., 2018, Palm Oil Fuel Ash as A Cement Replacement in Concrete. Modern Approaches on Material Science, 1, 4-8.
  • Reddy, S., Reddy, R. and Songkasupa, P., 2018. Evaluation of Mechanical Properties of Cement Concrete Pavement Using Granite Dust and Baggage Ash. International Journal of Applied Engineering Research, 13, 187–192.
  • RILEM Committee 73-SBC, 1988. Final report: siliceous by-products for use in concrete. Materials and Structures, 21, 69–80.
  • Sandermann W. and Kohler, R., 1964. Holzforschung 18, 53.
  • Sangeetha, S. P., 2016. Rice Husk Ash Sandcrete Block as Low Cost Building Material. Int. Journal of Engineering Research and Application, 6, 46-49.
  • Saraswathy, V. and Song, H., 2007. Corrosion performance of rice husk ash blended concrete. Construction and Building Materials, 21, 1779–1784.
  • Sensale, G.R., 2006. Strength development of concrete with rice-husk ash. Cement & Concrete Composites, 28, 158–160.
  • Sobuz, H. R., Hasan, N. Md. S., Tamanna, N. and Islam, S. 2014. Structural Lightweight Concrete Production by Using Oil Palm Shell. Hindawi Publishing Corporation Journal of Materials, 2014, 1-6.
  • Sooksaen, P., Boodpha, V., Janrawang, P. and Songkasupa, P., 2018. Fabrication of Lightweight Concrete Composites Using Natural Fibers in Thailand. Engineering Materials, 765, 305–308.
  • Takano, R., Kayahara, M. and Nakagawa, H., 1977. Fukui-Ken Mokuzai Shikenjo 31, 1.
  • Tangchirapat, W., Saeting, T., Jaturapitakkul, C., Kiattikomol, K., Siripanichgorn, A., 2007. Use of waste ash from palm oil industry in concrete. Waste Management, 27, 81-88.
  • Tangjuank, S., 2011. Thermal insulation and physical properties of particleboards from pineapple leaves. International Journal of Physical Sciences, 6, 4528–4532.
  • Tolêdo, F.R.D., Kuruvilla J., Khosrow G. and England, G.L., 1999. The use of sisal fibre as reinforcement in cement based composites. Revista Brasileira de Engenharia Agrícola e Ambiental, 3, 245–256.
  • Xu, J.Y., Sugawara, R., Widyorini, R., Han, G.P. and Kawai, S., 2004. Manufacture and properties of low-density binderless particleboard from kenaf core. Journal of Wood Science, 50, 62–67.
  • Yalinkilic, M.K., Imamura, Y., Takahashi, M., Kalaycioglu, H., Nemli, G., Demirci, Z., Ozdemir, T., 1998. Biological, physical and mechanical properties of particleboard manufactured from waste tea leaves. International Biodeterioration & Biodegradation, 41, 75-84.
  • Yashwanth, M.K. and Nagarjuna, P., 2016. An Experimental Study on Synergic Effect of Sugar Cane Baggage Ash and Fly Ash in Concrete. International Journal for Innovative Research in Science & Technology, 3, 174–178.
  • Yoshizawa, S., Tanaka, M., Shekdar, A.V., 2004. Global trends in waste generation. Recycling, waste treatment and clean technology, 1541–1552.
  • Zhou, X., Zheng, F., Li, H. and Lu, C., 2010. An environment-friendly thermal insulation material from cotton stalk fibers. Energy and Buildings, 42, 1070–1074.
  • Zhou, X.Y., Li, J. and Zhou, D.G., 2004. Thermal transfer properties of low density wheat strawboard. Journal of Nanjing Forestry University, 28, 1–4.
  • Zhu, W.H., Tobias, B.C., Coutts, R.S.P. and Langfors, G., 1994. Air-Cured Banana-Fibre-Reinforced Cement Composites. Cement & Concrete Composites, 16, 3-8.
Toplam 72 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm Derleme Makaleler \ Review Articles
Yazarlar

İsmail Demir 0000-0001-8493-0309

Muhammet Elmalı 0000-0003-2281-6126

Yayımlanma Tarihi 25 Aralık 2020
Gönderilme Tarihi 17 Ağustos 2020
Kabul Tarihi 19 Ekim 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 8 Sayı: 4

Kaynak Göster

APA Demir, İ., & Elmalı, M. (2020). ORGANİK ATIKLARIN YAPI MALZEMESİ OLARAK KULLANABİLİRLİĞİNİN ARAŞTIRILMASI. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(4), 1303-1311. https://doi.org/10.21923/jesd.781554