Araştırma Makalesi
BibTex RIS Kaynak Göster

AN INVESTIGATION ON THE PRODUCTION OF COMPOSITE NANOFIBERS HAVING THERMAL ENERGY STORAGE PROPERTY BY CO-AXIAL ELECTROSPINNING METHOD

Yıl 2020, Cilt: 8 Sayı: 4, 1248 - 1259, 25.12.2020
https://doi.org/10.21923/jesd.823065

Öz

In this study, fatty acids, which were solid-liquid phase-change material (FDM), were encapsulated by the polymer sheath using a coaxial (two intertwined nozzles) electrospinning system. Thus, FDM was confined in the nanofiber structure as a core material and the composite nanofibers with heat storage/releasing properties in core/sheath structure were produced. In the study, polymethylmethacrylate (PMMA) polymer was used for nanofiber production, capric acid (CA), lauric acid (LA) and myristic acid (MA) fatty acids as FDM were used. The produced nanofibers offered heat storage properties ranging from 19 to 144 j/g, and their thermal decomposition temperature was determined as a minimum of 195 °C. It was concluded that the addition of conductive graphene into the core material consisting of fatty acid solution enabled the production of nanofiber with a homogeneous diameter, smooth surface and cylindrical shape. The highest energy storage capacity was obtained for lauric acid and it was concluded that composite nanofibers containing lauric acid/PMMA and capric acid/PMMA can be used as thermal energy storage material with high heat storage capacity.

Kaynakça

  • Alkan, C., Sarı, A., 2008. Fatty acid/poly (Methyl Methacrylate)(PMMA) Blends As Form-Stable Phase Change Materials For Latent Heat Thermal Energy Storage. Solar Energy, 82,2, 118-124.
  • Alkan, C., Günther, E., Hiebler, S., Himpel, M., 2012. Complexing Blends of Polyacrylic Acid-Polyethylene Glycol and Poly(ethylene-co-acrylic acid)-Polyethylene Glycol as Shape Stabilized Phase Change Materials. Energy Conversion and Management, 64, 364-370.
  • Babapoor, A., Karimi, G., Golestaneh, S. I., Mezjin, M. A., 2017. Coaxial Electro-spun PEG/PA6 Composite Fibers: Fabrication and Characterization. Applied Thermal Engineering, 118, 398-407.
  • Cai, Y., Ke, H., Lin, L., Fei, X., Wei, Q., Song, L., Hu, Y., Fong, H., 2012. Preparation, Morphology and Thermal Properties of Electrospun Fatty Acid Eutectics/Polyethylene Terephthalate Form-Stable Phase Change Ultrafine Composite Fibers for Thermal Energy Storage. Energy Conversion and Management, 64, 245-255.
  • Carrizales, C., Pelfrey, S., Rincon, R., Eubanks, T. M., Kuang, A., McClure, M. J., Bowlin, G. L., Macossay, J. 2008. Thermal and Mechanical Properties of Electrospun PMMA, PVC, Nylon 6, and Nylon 6, 6. Polymers for Advanced Technologies, 19(2), 124-130.
  • Ceylan, İ., Zuhur, S., Gürel, A.E., 2017. Isı Depolama Yöntemleri ve Uygulamaları. Türk Tesisat Mühendisleri Derneği Dergisi, Kasım-Aralık, 38-47.
  • Chen, C., Zhao, Y., Liu, W., 2013. Electrospun Polyethylene Glycol/Cellulose Acetate Phase Change Fibers with Core–Sheath Structure for Thermal Energy Storage. Renewable Energy, 60, 222-225.
  • Chen, C., Wang, L., & Huang, Y. 2008. Morphology and Thermal Properties of Electrospun Fatty Acids/Polyethylene Terephthalate Composite Fibers as Novel Form-Stable Phase Change Materials. Solar Energy Materials and Solar Cells, 92(11), 1382-1387.
  • Dang, T. T., Nguyen, T. T. T., Chung, O. H., Park, J. S., 2015. Fabrication of Form-Stable Poly (Ethylene Glycol)-Loaded Poly (Vinylidene Fluoride) Nanofibers via Single and Coaxial Electrospinning. Macromolecular Research, 23(9), 819-829.
  • Genç, E., 2016. Tekstil Uygulamaları İçin Fonksiyonel Duvarlı Mikrokapsül Üretimi. Yüksek Lisans Tezi. Süleyman Demirel Üniversitesi, Türkiye.
  • Giro-Paloma, J., Martinez, M., Gabeza, L., Fernandez, A., I., 2016. Types, Methods, Techniques and Applications for Microencapsulated Phase Changematerials (MPCM). Renewable and Sustainable Energy Reviews, 53, 1059-1075.
  • Golestaneh, S. I., Karimi, G., Babapoor, A., & Torabi, F. 2018. Thermal Performance of Co-Electrospun Fatty Acid Nanofiber Composites in the Presence of Nanoparticles. Applied Energy, 212, 552-564.
  • Günerhan, H., 2004. Duyulur Isı Depolama ve Bazalt Taşı. Mühendis ve Makina, 530(45), 12-17.
  • Haghighat, F., Ravandi, S. A. H., Esfahany, M. N., & Valipouri, A. 2018. A Comprehensive Study on Optimizing and Thermoregulating Properties of Core–Shell Fibrous Structures Through Coaxial Electrospinning. Journal of Materials Science, 53(6), 4665-4682.
  • Hemmatian, B., Heidarzadeh, N., Fard, G. C., & Maleknia, L., 2020. Fabrication of Phase-Change Core/Shell Nanofibers Based on a Eutectic Fatty Acid Mixture to Control Body Temperature Fluctuations. Materials Chemistry and Physics, 122738.
  • Hong, R. Y., Qian, J. Z., Cao, J. X., 2006. Synthesis and Characterization of PMMA Grafted ZnO Nanoparticles. Powder Technology, 163(3), 160-168.
  • Hu, W., Yu, X., 2014. Thermal and Mechanical Properties of Bio-Based PCMs Encapsulated with Nanofibrous Structure. Renewable Energy, 62, 454-458.
  • Lee, D. C., Jang, L. W., 1996. Preparation and Characterization of PMMA–Clay Hybrid Composite by Emulsion Polymerization. Journal of Applied Polymer Science, 61(7), 1117-1122.
  • Lin, Y., Zhu, C., Alva, G., & Fang, G. 2018. Microencapsulation and Thermal Properties of Myristic Acid with Ethyl Cellulose Shell for Thermal Energy Storage. Applied Energy, 231, 494-501.
  • Lu, Y., Xiao, X., Zhan, Y., Huan, C., Qi, S., Cheng, H., Xu, G., 2018. Core-Sheath Paraffin-Wax-Loaded Nanofibers by Electrospinning for Heat Storage. ACS Applied Materials & Interfaces, 10(15), 12759-12767.
  • Lu, Y., Xiao, X., Fu, J., Huan, C., Qi, S., Zhan, Y., Zhu, Y., Xu, G.,2019. Novel Smart Textile with Phase Change Materials Encapsulated Core-Sheath Structure Fabricated by Coaxial Electrospinning. Chemical Engineering Journal, 355, 532-539.
  • Macossay, J., Marruffo, A., Rincon, R., Eubanks, T., & Kuang, A. 2007. Effect of Needle Diameter on Nanofiber Diameter and Thermal Properties of Electrospun Poly (Methyl Methacrylate). Polymers for Advanced Technologies, 18(3), 180-183.
  • McCann, J.T., Marquez, M., Xia, Y.N., 2006. Melt Coaxial Electrospinning: A Versatile Method for The Encapsulation of Solid Materials and Fabrication of Phase Change Nanofibers. Nano Letters, 6, 2868–2872.
  • Mondal, S., 2008. Phase Change Materials for Smart Textiles-an Overview. Applied Thermal Engineering, 28, 1536-50.
  • Noyan, E. C., Onder, E., Sarier, N., Arat, R., 2018. Development of Heat Storing Poly(Acrylonitrile) Nanofibers by Coaxial Electrospinning. Thermochimica Acta, 662, 135-148.
  • Özkayalar, S., 2019. Çift Duvarlı Faz Değiştiren Madde Çekirdekli Nano ve Mikrokapsüllerin Üretimi ve Tekstil Uygulaması. Yüksek Lisans Tezi. Süleyman Demirel Üniversitesi, Türkiye.
  • Pelfrey, S., Cantu, T., Papantonakis, M. R., Simonson, D. L., McGill, R. A., & Macossay, J. 2010. Microscopic and Spectroscopic Studies of Thermally Enhanced Electrospun PMMA Micro-and Nanofibers. Polymer Chemistry, 1(6), 866-869.
  • Qian, T., Li, J., Min, X., Guan, W., Deng, Y., Ning, L., 2015. Enhanced Thermal Conductivity of PEG/Diatomite Shape-Stabilized Phase Change Materials With Ag Nanoparticles For Thermal Energy Storage. Journal of Materials Chemistry A, 3(16), 8526-8536.
  • Sarı, A., Bicer, A., Al-Sulaiman, F. A., Karaipekli, A., Tyagi, V. V., 2018. Diatomite/CNTs/PEG Composite PCMs with Shape-Stabilized and Improved Thermal Conductivity: Preparation Aad Thermal Energy Storage Properties. Energy and Buildings, 164, 166-175.
  • Sarı, A., Bicer, A., Alkan, C., Özcan, A. N., 2019. Thermal Energy Storage Characteristics of Myristic Acid-Palmitic Eutectic Mixtures Encapsulated in PMMA Shell. Solar Energy Materials and Solar Cells, 193, 1-6.
  • Sarier, N., Arat, R., Menceloglu, Y., Onder, E., Boz, E. C., Oguz, O., 2016. Production of PEG Grafted PAN Copolymers and Their Electrospun Nanowebs As Novel Thermal Energy Storage Materials. Thermochimica Acta, 643, 83-93.
  • Sun, S-X., Xie, R., Wang, X-X., Wen, G-Q., Liu, Z., Wang, W., Ju, X-J., Chu, L-Y., 2015. Fabrication of Nanofibers with Phase-Change Core and Hydrophobic Shell, via Coaxial Electrospinning Using Nontoxic Solvent. Journal of Materials Science, 50(17), 5729-5738.
  • Şentürk, S. B., Kahraman, D., Alkan, C., Gökçe, İ., 2011. Biodegradable PEG/Cellulose, PEG/Agarose and PEG/Chitosan Blends as Shape Stabilized Phase Change Materials for Latent Heat Energy Storage. Carbohydrate Polymers, 84(1), 141-144.
  • Van Do, C., Nguyen, T. T. T., Park, J. S., 2013. Phase-Change Core/Shell Structured Nanofibers Based on Eicosane/Poly(Vinylidene Fluoride) For Thermal Storage Applications. Korean Journal of Chemical Engineering, 30(7), 1403-1409.
  • Wan, Y., Zhou, P., Liu, Y., & Chen, H., 2016. Novel Wearable Polyacrylonitrile/Phase-Change Material Sheath/Core Nano-Fibers Fabricated By Coaxial Electro-Spinning. RSC Advances, 6(25), 21204-21209.
  • Wu, Y., & Wang, T., 2015. Hydrated Salts/Expanded Graphite Composite with High Thermal Conductivity as A Shape-Stabilized Phase Change Material For Thermal Energy Storage. Energy Conversion and Management, 101, 164-171.
  • Zdraveva, E., Fang, J., Mijovic, B., Lin, T., 2015. Electrospun Poly(Vinyl Alcohol)/Phase Change Material Fibers: Morphology, Heat Properties, And Stability. Industrial & Engineering Chemistry Research, 54(35), 8706-8712.
  • Zhang, Y., Zheng, S., Zhu, S., Ma, J., Sun, Z., Farid, M., 2018. Evaluation of Paraffin Infiltrated in Various Porous Silica Matrices as Shape-Stabilized Phase Change Materials For Thermal Energy Storage. Energy Conversion and Management, 171, 361-370.

EŞ EKSENLİ ELEKTRO LİF ÇEKİM YÖNTEMİ İLE TERMAL ENERJİ DEPOLAMA ÖZELLİKLİ KOMPOZİT NANOLİF ÜRETİMİ ÜZERİNE BİR ARAŞTIRMA

Yıl 2020, Cilt: 8 Sayı: 4, 1248 - 1259, 25.12.2020
https://doi.org/10.21923/jesd.823065

Öz

Bu çalışmada, katı-sıvı faz değişim maddesi (FDM) olan yağ asitleri eş eksen düzeli (iç içe geçmiş iki düze) elektro lif çekim sistemi kullanılarak polimer kılıf tarafından kapsüllenmiştir. Böylece FDM’nin nanolif yapı içerisine öz madde olarak hapsedilmesi ve öz/kılıf yapısında ısı depolama/yayma özellikli kompozit nanoliflerin üretimi gerçekleştirilmiştir. Çalışmada nanolif üretimi için polimetil metakrilat (PMMA) polimeri, FDM olarak kaprik asit (KA), laurik asit (LA) ve miristik asit (MA) yağ asitleri kullanılmıştır. Üretilen nanoliflerin 19 ile 144 j/g aralığında değişen oranlarda ısı depolama özellikleri ve minimum 195 °C ve üzeri termal bozunma sıcaklıkları sundukları belirlenmiştir. Yağ asidi çözeltisinden ibaret öz madde içerisine iletken grafen ilavesinin homojen çaplı, düzgün yüzeyli ve silindirik şekle sahip nanolif üretimine olanak sunduğu belirlenmiştir. En yüksek enerji depolama kapasitesi laurik asit için elde edilmiş ve özellikle laurik asit/PMMA ve kaprik asit/PMMA içerikli kompozit nanoliflerin yüksek ısı depolama kapasitesine sahip termal enerji depolama malzemesi olarak kullanılabileceği sonucuna varılmıştır.

Kaynakça

  • Alkan, C., Sarı, A., 2008. Fatty acid/poly (Methyl Methacrylate)(PMMA) Blends As Form-Stable Phase Change Materials For Latent Heat Thermal Energy Storage. Solar Energy, 82,2, 118-124.
  • Alkan, C., Günther, E., Hiebler, S., Himpel, M., 2012. Complexing Blends of Polyacrylic Acid-Polyethylene Glycol and Poly(ethylene-co-acrylic acid)-Polyethylene Glycol as Shape Stabilized Phase Change Materials. Energy Conversion and Management, 64, 364-370.
  • Babapoor, A., Karimi, G., Golestaneh, S. I., Mezjin, M. A., 2017. Coaxial Electro-spun PEG/PA6 Composite Fibers: Fabrication and Characterization. Applied Thermal Engineering, 118, 398-407.
  • Cai, Y., Ke, H., Lin, L., Fei, X., Wei, Q., Song, L., Hu, Y., Fong, H., 2012. Preparation, Morphology and Thermal Properties of Electrospun Fatty Acid Eutectics/Polyethylene Terephthalate Form-Stable Phase Change Ultrafine Composite Fibers for Thermal Energy Storage. Energy Conversion and Management, 64, 245-255.
  • Carrizales, C., Pelfrey, S., Rincon, R., Eubanks, T. M., Kuang, A., McClure, M. J., Bowlin, G. L., Macossay, J. 2008. Thermal and Mechanical Properties of Electrospun PMMA, PVC, Nylon 6, and Nylon 6, 6. Polymers for Advanced Technologies, 19(2), 124-130.
  • Ceylan, İ., Zuhur, S., Gürel, A.E., 2017. Isı Depolama Yöntemleri ve Uygulamaları. Türk Tesisat Mühendisleri Derneği Dergisi, Kasım-Aralık, 38-47.
  • Chen, C., Zhao, Y., Liu, W., 2013. Electrospun Polyethylene Glycol/Cellulose Acetate Phase Change Fibers with Core–Sheath Structure for Thermal Energy Storage. Renewable Energy, 60, 222-225.
  • Chen, C., Wang, L., & Huang, Y. 2008. Morphology and Thermal Properties of Electrospun Fatty Acids/Polyethylene Terephthalate Composite Fibers as Novel Form-Stable Phase Change Materials. Solar Energy Materials and Solar Cells, 92(11), 1382-1387.
  • Dang, T. T., Nguyen, T. T. T., Chung, O. H., Park, J. S., 2015. Fabrication of Form-Stable Poly (Ethylene Glycol)-Loaded Poly (Vinylidene Fluoride) Nanofibers via Single and Coaxial Electrospinning. Macromolecular Research, 23(9), 819-829.
  • Genç, E., 2016. Tekstil Uygulamaları İçin Fonksiyonel Duvarlı Mikrokapsül Üretimi. Yüksek Lisans Tezi. Süleyman Demirel Üniversitesi, Türkiye.
  • Giro-Paloma, J., Martinez, M., Gabeza, L., Fernandez, A., I., 2016. Types, Methods, Techniques and Applications for Microencapsulated Phase Changematerials (MPCM). Renewable and Sustainable Energy Reviews, 53, 1059-1075.
  • Golestaneh, S. I., Karimi, G., Babapoor, A., & Torabi, F. 2018. Thermal Performance of Co-Electrospun Fatty Acid Nanofiber Composites in the Presence of Nanoparticles. Applied Energy, 212, 552-564.
  • Günerhan, H., 2004. Duyulur Isı Depolama ve Bazalt Taşı. Mühendis ve Makina, 530(45), 12-17.
  • Haghighat, F., Ravandi, S. A. H., Esfahany, M. N., & Valipouri, A. 2018. A Comprehensive Study on Optimizing and Thermoregulating Properties of Core–Shell Fibrous Structures Through Coaxial Electrospinning. Journal of Materials Science, 53(6), 4665-4682.
  • Hemmatian, B., Heidarzadeh, N., Fard, G. C., & Maleknia, L., 2020. Fabrication of Phase-Change Core/Shell Nanofibers Based on a Eutectic Fatty Acid Mixture to Control Body Temperature Fluctuations. Materials Chemistry and Physics, 122738.
  • Hong, R. Y., Qian, J. Z., Cao, J. X., 2006. Synthesis and Characterization of PMMA Grafted ZnO Nanoparticles. Powder Technology, 163(3), 160-168.
  • Hu, W., Yu, X., 2014. Thermal and Mechanical Properties of Bio-Based PCMs Encapsulated with Nanofibrous Structure. Renewable Energy, 62, 454-458.
  • Lee, D. C., Jang, L. W., 1996. Preparation and Characterization of PMMA–Clay Hybrid Composite by Emulsion Polymerization. Journal of Applied Polymer Science, 61(7), 1117-1122.
  • Lin, Y., Zhu, C., Alva, G., & Fang, G. 2018. Microencapsulation and Thermal Properties of Myristic Acid with Ethyl Cellulose Shell for Thermal Energy Storage. Applied Energy, 231, 494-501.
  • Lu, Y., Xiao, X., Zhan, Y., Huan, C., Qi, S., Cheng, H., Xu, G., 2018. Core-Sheath Paraffin-Wax-Loaded Nanofibers by Electrospinning for Heat Storage. ACS Applied Materials & Interfaces, 10(15), 12759-12767.
  • Lu, Y., Xiao, X., Fu, J., Huan, C., Qi, S., Zhan, Y., Zhu, Y., Xu, G.,2019. Novel Smart Textile with Phase Change Materials Encapsulated Core-Sheath Structure Fabricated by Coaxial Electrospinning. Chemical Engineering Journal, 355, 532-539.
  • Macossay, J., Marruffo, A., Rincon, R., Eubanks, T., & Kuang, A. 2007. Effect of Needle Diameter on Nanofiber Diameter and Thermal Properties of Electrospun Poly (Methyl Methacrylate). Polymers for Advanced Technologies, 18(3), 180-183.
  • McCann, J.T., Marquez, M., Xia, Y.N., 2006. Melt Coaxial Electrospinning: A Versatile Method for The Encapsulation of Solid Materials and Fabrication of Phase Change Nanofibers. Nano Letters, 6, 2868–2872.
  • Mondal, S., 2008. Phase Change Materials for Smart Textiles-an Overview. Applied Thermal Engineering, 28, 1536-50.
  • Noyan, E. C., Onder, E., Sarier, N., Arat, R., 2018. Development of Heat Storing Poly(Acrylonitrile) Nanofibers by Coaxial Electrospinning. Thermochimica Acta, 662, 135-148.
  • Özkayalar, S., 2019. Çift Duvarlı Faz Değiştiren Madde Çekirdekli Nano ve Mikrokapsüllerin Üretimi ve Tekstil Uygulaması. Yüksek Lisans Tezi. Süleyman Demirel Üniversitesi, Türkiye.
  • Pelfrey, S., Cantu, T., Papantonakis, M. R., Simonson, D. L., McGill, R. A., & Macossay, J. 2010. Microscopic and Spectroscopic Studies of Thermally Enhanced Electrospun PMMA Micro-and Nanofibers. Polymer Chemistry, 1(6), 866-869.
  • Qian, T., Li, J., Min, X., Guan, W., Deng, Y., Ning, L., 2015. Enhanced Thermal Conductivity of PEG/Diatomite Shape-Stabilized Phase Change Materials With Ag Nanoparticles For Thermal Energy Storage. Journal of Materials Chemistry A, 3(16), 8526-8536.
  • Sarı, A., Bicer, A., Al-Sulaiman, F. A., Karaipekli, A., Tyagi, V. V., 2018. Diatomite/CNTs/PEG Composite PCMs with Shape-Stabilized and Improved Thermal Conductivity: Preparation Aad Thermal Energy Storage Properties. Energy and Buildings, 164, 166-175.
  • Sarı, A., Bicer, A., Alkan, C., Özcan, A. N., 2019. Thermal Energy Storage Characteristics of Myristic Acid-Palmitic Eutectic Mixtures Encapsulated in PMMA Shell. Solar Energy Materials and Solar Cells, 193, 1-6.
  • Sarier, N., Arat, R., Menceloglu, Y., Onder, E., Boz, E. C., Oguz, O., 2016. Production of PEG Grafted PAN Copolymers and Their Electrospun Nanowebs As Novel Thermal Energy Storage Materials. Thermochimica Acta, 643, 83-93.
  • Sun, S-X., Xie, R., Wang, X-X., Wen, G-Q., Liu, Z., Wang, W., Ju, X-J., Chu, L-Y., 2015. Fabrication of Nanofibers with Phase-Change Core and Hydrophobic Shell, via Coaxial Electrospinning Using Nontoxic Solvent. Journal of Materials Science, 50(17), 5729-5738.
  • Şentürk, S. B., Kahraman, D., Alkan, C., Gökçe, İ., 2011. Biodegradable PEG/Cellulose, PEG/Agarose and PEG/Chitosan Blends as Shape Stabilized Phase Change Materials for Latent Heat Energy Storage. Carbohydrate Polymers, 84(1), 141-144.
  • Van Do, C., Nguyen, T. T. T., Park, J. S., 2013. Phase-Change Core/Shell Structured Nanofibers Based on Eicosane/Poly(Vinylidene Fluoride) For Thermal Storage Applications. Korean Journal of Chemical Engineering, 30(7), 1403-1409.
  • Wan, Y., Zhou, P., Liu, Y., & Chen, H., 2016. Novel Wearable Polyacrylonitrile/Phase-Change Material Sheath/Core Nano-Fibers Fabricated By Coaxial Electro-Spinning. RSC Advances, 6(25), 21204-21209.
  • Wu, Y., & Wang, T., 2015. Hydrated Salts/Expanded Graphite Composite with High Thermal Conductivity as A Shape-Stabilized Phase Change Material For Thermal Energy Storage. Energy Conversion and Management, 101, 164-171.
  • Zdraveva, E., Fang, J., Mijovic, B., Lin, T., 2015. Electrospun Poly(Vinyl Alcohol)/Phase Change Material Fibers: Morphology, Heat Properties, And Stability. Industrial & Engineering Chemistry Research, 54(35), 8706-8712.
  • Zhang, Y., Zheng, S., Zhu, S., Ma, J., Sun, Z., Farid, M., 2018. Evaluation of Paraffin Infiltrated in Various Porous Silica Matrices as Shape-Stabilized Phase Change Materials For Thermal Energy Storage. Energy Conversion and Management, 171, 361-370.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Giyilebilir Malzemeler
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Gizem Özmen 0000-0002-1680-0737

Sennur Alay Aksoy 0000-0002-5878-6726

Yayımlanma Tarihi 25 Aralık 2020
Gönderilme Tarihi 8 Kasım 2020
Kabul Tarihi 7 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 8 Sayı: 4

Kaynak Göster

APA Özmen, G., & Alay Aksoy, S. (2020). EŞ EKSENLİ ELEKTRO LİF ÇEKİM YÖNTEMİ İLE TERMAL ENERJİ DEPOLAMA ÖZELLİKLİ KOMPOZİT NANOLİF ÜRETİMİ ÜZERİNE BİR ARAŞTIRMA. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(4), 1248-1259. https://doi.org/10.21923/jesd.823065