Araştırma Makalesi
BibTex RIS Kaynak Göster

GREEN SYNTHESIS OF SPHERICAL-SHAPED Ni1/3Co1/3Mn1/3CO3 PARTICLES

Yıl 2021, Cilt: 9 Sayı: 1, 330 - 335, 30.03.2021
https://doi.org/10.21923/jesd.726228

Öz

In this study, we reported a simple and green manufacturing of a uniform, sphere-shaped [Ni1/3Co1/3Mn1/3]CO3 nanoparticles, which can be considered as a precursor for Li[Ni1/3Co1/3Mn1/3]O2 . Ni-Co-Mn carbonate particle was prepared via three steps, (1), the mixing metal sulfate salts with Na2CO3 which, formed the primary precipitation, (2) the addition of (NH4)2CO3, responsible for the increasing conversion rate, (3) the hydrothermal treatment lead to existing of recrystallization and spherical shape of [Ni1/3Co1/3Mn1/3]CO3 particles. The morphology and crystalline structure of the present material is characterized by Energy-dispersive X-ray Spectroscopy (EDS), Scanning Electron Microscopic (SEM) and X-ray diffraction (XRD). Analysis outcomes indicated that the particle's growth mechanism of spherical composition is depend on a dissolution-recrystallization process of metal salts and (NH4)2CO3 dissociation process. This study opens a green avenue to prepare cathode materials in the lithium-ion battery application.

Destekleyen Kurum

This work was supported by Virginia Commonwealth University, Department of Chemical and Life Science Engineering

Teşekkür

Thanks to Prof. Dr. Ram B. Gupta for his endless support.

Kaynakça

  • Altinci, O. C. and M. Demir (2020). "Beyond Conventional Activating Methods, a Green Approach for the Synthesis of Biocarbon and Its Supercapacitor Electrode Performance." Energy & Fuels 34(6): 7658-7665.
  • Ashourirad, B., M. Demir, R. A. Smith, R. B. Gupta and H. M. El-Kaderi (2018). "Rapid transformation of heterocyclic building blocks into nanoporous carbons for high-performance supercapacitors." Rsc Advances 8(22): 12300-12309.
  • Demir, M., B. Ashourirad, J. H. Mugumya, S. K. Saraswat, H. M. El-Kaderi and R. B. Gupta (2018). "Nitrogen and oxygen dual-doped porous carbons prepared from pea protein as electrode materials for high performance supercapacitors." International Journal of Hydrogen Energy 43(40): 18549-18558.
  • Demir, M., A. A. Farghaly, M. J. Decuir, M. M. Collinson and R. B. Gupta (2018). "Supercapacitance and oxygen reduction characteristics of sulfur self-doped micro/mesoporous bio-carbon derived from lignin." Materials Chemistry and Physics 216: 508-516.
  • Demir, M., S. K. Saraswat and R. B. Gupta (2017). "Hierarchical nitrogen-doped porous carbon derived from lecithin for high-performance supercapacitors." Rsc Advances 7(67): 42430-42442.
  • Demir, M., T. D. Tessema, A. A. Farghaly, E. Nyankson, S. K. Saraswat, B. Aksoy, T. Islamoglu, M. M. Collinson, H. M. El-Kaderi and R. B. Gupta (2018). "Lignin-derived heteroatom-doped porous carbons for supercapacitor and CO2 capture applications." International Journal of Energy Research 42(8): 2686-2700.
  • Gong, C., Z. Xue, S. Wen, Y. Ye and X. Xie (2016). "Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries." Journal of Power Sources 318: 93-112.
  • Gong, Z. and Y. Yang (2011). "Recent advances in the research of polyanion-type cathode materials for Li-ion batteries." Energy & Environmental Science 4(9): 3223-3242.
  • Hou, P., H. Zhang, Z. Zi, L. Zhang and X. Xu (2017). "Core–shell and concentration-gradient cathodes prepared via co-precipitation reaction for advanced lithium-ion batteries." Journal of Materials Chemistry A 5(9): 4254-4279.
  • Jo, M., H. Ku, S. Park, J. Song and K. Kwon (2018). "Effects of Residual Lithium in the precursors of Li [Ni1/3Co1/3Mn1/3] O2 on their lithium-ion battery performance." Journal of Physics and Chemistry of Solids 118: 47-52.
  • Kalluri, S., M. Yoon, M. Jo, S. Park, S. Myeong, J. Kim, S. X. Dou, Z. Guo and J. Cho (2017). "Surface Engineering Strategies of Layered LiCoO2 Cathode Material to Realize High‐Energy and High‐Voltage Li‐Ion Cells." Advanced Energy Materials 7(1): 1601507.
  • Kim, J.-H., K.-J. Park, S. J. Kim, C. S. Yoon and Y.-K. Sun (2019). "A method of increasing the energy density of layered Ni-rich Li [Ni 1− 2x Co x Mn x] O 2 cathodes (x= 0.05, 0.1, 0.2)." Journal of materials chemistry A 7(6): 2694-2701.
  • Kwak, D., W.-G. Lim, K. Shin, I. W. Cheong, J. Lee and J. Joo (2020). "Solid-state conversion of metal oleate precursors for the preparation of LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium-ion batteries." Korean J. Chem. Eng 37(2): 1-9.
  • Lee, M.-H., Y.-J. Kang, S.-T. Myung and Y.-K. Sun (2004). "Synthetic optimization of Li [Ni1/3Co1/3Mn1/3] O2 via co-precipitation." Electrochimica Acta 50(4): 939-948.
  • Li, S., K. Zhu, J. Liu, D. Zhao and X. Cui (2019). "Porous LiMn2O4 microspheres with different pore size: preparation and application as cathode materials for lithium ion batteries." Journal of Electrochemical Energy Conversion and Storage 16(1).
  • Liu, M.-Y., J. Tan, W.-S. Deng, Y.-F. Su, L. Chen and L. Liu (2019). Synthesis of spherical Ni0. 8Co0. 1Mn0. 1 (OH) 2 precursor via hydrothermal method assisted by microfluidics. IOP Conference Series: Earth and Environmental Science, IOP Publishing.
  • Myung, S.-T., M.-H. Lee, S. Komaba, N. Kumagai and Y.-K. Sun (2005). "Hydrothermal synthesis of layered Li [Ni1/3Co1/3Mn1/3] O2 as positive electrode material for lithium secondary battery." Electrochimica acta 50(24): 4800-4806.
  • Nayak, P. K., E. M. Erickson, F. Schipper, T. R. Penki, N. Munichandraiah, P. Adelhelm, H. Sclar, F. Amalraj, B. Markovsky and D. Aurbach (2018). "Review on challenges and recent advances in the electrochemical performance of high capacity Li‐and Mn‐rich cathode materials for Li‐ion batteries." Advanced Energy Materials 8(8): 1702397.
  • Nayaka, G., Y. Zhang, P. Dong, D. Wang, K. Pai, J. Manjanna, G. Santhosh, J. Duan, Z. Zhou and J. Xiao (2018). "Effective and environmentally friendly recycling process designed for LiCoO2 cathode powders of spent Li-ion batteries using mixture of mild organic acids." Waste Management 78: 51-57.
  • Park, J.-H., J.-S. Kim, E.-G. Shim, K.-W. Park, Y. T. Hong, Y.-S. Lee and S.-Y. Lee (2010). "Polyimide gel polymer electrolyte-nanoencapsulated LiCoO2 cathode materials for high-voltage Li-ion batteries." Electrochemistry Communications 12(8): 1099-1102.
  • Ryu, W.-H., S.-J. Lim, W.-K. Kim and H. Kwon (2014). "3-D dumbbell-like LiNi1/3Mn1/3Co1/3O2 cathode materials assembled with nano-building blocks for lithium-ion batteries." Journal of Power Sources 257: 186-191.
  • Shi, J. L., D. D. Xiao, M. Ge, X. Yu, Y. Chu, X. Huang, X. D. Zhang, Y. X. Yin, X. Q. Yang and Y. G. Guo (2018). "High‐Capacity Cathode Material with High Voltage for Li‐Ion Batteries." Advanced Materials 30(9): 1705575.
  • Shi, Y., M. Zhang, C. Fang and Y. S. Meng (2018). "Urea-based hydrothermal synthesis of LiNi0. 5Co0. 2Mn0. 3O2 cathode material for Li-ion battery." Journal of Power Sources 394: 114-121.
  • Tang, Y., Y. Lu and G. Luo (2016). "Controllable Hydrothermal Conversion from Ni-Co-Mn Carbonate Nanoparticles to Microspheres." Crystals 6(11): 156.
  • Wang, Z., Y. Yin, Y. Ren, Z. Wang, M. Gao, T. Ma, W. Zhuang, S. Lu, A. Fan and K. Amine (2017). "High performance lithium-manganese-rich cathode material with reduced impurities." Nano Energy 31: 247-257.
  • Yan, B., S. Lin, L. Kang, X. Song, Z. Tian and K. Jiang (2020). "Spinel structured LiMn2O4 prepared by laser annealing." Materials Technology: 1-6.
  • Zhu, L., G. Yang, J. Liu, C. Bao, L. Xie and X. Cao (2019). "Ethylene Glycol‐Assisted Sol‐Gel Method for Preparing LiNi1/3Co1/3Mn1/3O2 as Cathode Material for Lithium‐Ion Batteries with Excellent Electrochemical Performance." ChemistrySelect 4(39): 11475-11482.

YEŞİL YÖNTEM İLE KÜRESEL Ni1/3Co1/3Mn1/3CO3 PARÇACIKLARIN SENTEZİ

Yıl 2021, Cilt: 9 Sayı: 1, 330 - 335, 30.03.2021
https://doi.org/10.21923/jesd.726228

Öz

Bu çalışmada, tek tip, küre şeklinde bir [Ni1/3Co1/3Mn1/3]CO3 nanopartiküllerinin basit ve çevreye duyarlı sentez yöntemiyle üretilmesini çalışılmıştır. Ni-Co-Mn karbonat partikülü üç aşamada hazırlandı, (1), birincil sülfat oluşturan Na2CO3 ile metal sülfat tuzlarının karıştırılması, (2) ekstra (NH4)2CO3 ilave edilmesi reaksiyonun gerçekleşmesine neden olan kimyasal, (3) hidrotermal metodu ile [Ni1/3Co1/3Mn1/3]CO3 partiküllerinin kristallenmesi ve küresel şeklinin oluşması. Mevcut malzemenin morfolojisi ve kristalin yapısı, Enerji-dağıtıcı X-ışını Spektroskopisi (EDS), Taramalı Elektron Mikroskopik (SEM) ve X-ışını kırınımı (XRD) ve ile karakterize edildi. Analiz sonuçları, parçacığın küresel yapı mekanizmasının, metal tuzlarının bir çözünme-yeniden kristalizasyon işlemine ve (NH4)2CO3 ayrışma işlemine dayandığını göstermiştir. Bu makelde yapılan araştırmalar ile, lityum iyon pilleri için katot materyalleri hazırlamanmasında çevreye duyarlı hidrotermal yönteminin kullanılması bu konuda yeni yaklaşımlar açacaktır.

Kaynakça

  • Altinci, O. C. and M. Demir (2020). "Beyond Conventional Activating Methods, a Green Approach for the Synthesis of Biocarbon and Its Supercapacitor Electrode Performance." Energy & Fuels 34(6): 7658-7665.
  • Ashourirad, B., M. Demir, R. A. Smith, R. B. Gupta and H. M. El-Kaderi (2018). "Rapid transformation of heterocyclic building blocks into nanoporous carbons for high-performance supercapacitors." Rsc Advances 8(22): 12300-12309.
  • Demir, M., B. Ashourirad, J. H. Mugumya, S. K. Saraswat, H. M. El-Kaderi and R. B. Gupta (2018). "Nitrogen and oxygen dual-doped porous carbons prepared from pea protein as electrode materials for high performance supercapacitors." International Journal of Hydrogen Energy 43(40): 18549-18558.
  • Demir, M., A. A. Farghaly, M. J. Decuir, M. M. Collinson and R. B. Gupta (2018). "Supercapacitance and oxygen reduction characteristics of sulfur self-doped micro/mesoporous bio-carbon derived from lignin." Materials Chemistry and Physics 216: 508-516.
  • Demir, M., S. K. Saraswat and R. B. Gupta (2017). "Hierarchical nitrogen-doped porous carbon derived from lecithin for high-performance supercapacitors." Rsc Advances 7(67): 42430-42442.
  • Demir, M., T. D. Tessema, A. A. Farghaly, E. Nyankson, S. K. Saraswat, B. Aksoy, T. Islamoglu, M. M. Collinson, H. M. El-Kaderi and R. B. Gupta (2018). "Lignin-derived heteroatom-doped porous carbons for supercapacitor and CO2 capture applications." International Journal of Energy Research 42(8): 2686-2700.
  • Gong, C., Z. Xue, S. Wen, Y. Ye and X. Xie (2016). "Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries." Journal of Power Sources 318: 93-112.
  • Gong, Z. and Y. Yang (2011). "Recent advances in the research of polyanion-type cathode materials for Li-ion batteries." Energy & Environmental Science 4(9): 3223-3242.
  • Hou, P., H. Zhang, Z. Zi, L. Zhang and X. Xu (2017). "Core–shell and concentration-gradient cathodes prepared via co-precipitation reaction for advanced lithium-ion batteries." Journal of Materials Chemistry A 5(9): 4254-4279.
  • Jo, M., H. Ku, S. Park, J. Song and K. Kwon (2018). "Effects of Residual Lithium in the precursors of Li [Ni1/3Co1/3Mn1/3] O2 on their lithium-ion battery performance." Journal of Physics and Chemistry of Solids 118: 47-52.
  • Kalluri, S., M. Yoon, M. Jo, S. Park, S. Myeong, J. Kim, S. X. Dou, Z. Guo and J. Cho (2017). "Surface Engineering Strategies of Layered LiCoO2 Cathode Material to Realize High‐Energy and High‐Voltage Li‐Ion Cells." Advanced Energy Materials 7(1): 1601507.
  • Kim, J.-H., K.-J. Park, S. J. Kim, C. S. Yoon and Y.-K. Sun (2019). "A method of increasing the energy density of layered Ni-rich Li [Ni 1− 2x Co x Mn x] O 2 cathodes (x= 0.05, 0.1, 0.2)." Journal of materials chemistry A 7(6): 2694-2701.
  • Kwak, D., W.-G. Lim, K. Shin, I. W. Cheong, J. Lee and J. Joo (2020). "Solid-state conversion of metal oleate precursors for the preparation of LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium-ion batteries." Korean J. Chem. Eng 37(2): 1-9.
  • Lee, M.-H., Y.-J. Kang, S.-T. Myung and Y.-K. Sun (2004). "Synthetic optimization of Li [Ni1/3Co1/3Mn1/3] O2 via co-precipitation." Electrochimica Acta 50(4): 939-948.
  • Li, S., K. Zhu, J. Liu, D. Zhao and X. Cui (2019). "Porous LiMn2O4 microspheres with different pore size: preparation and application as cathode materials for lithium ion batteries." Journal of Electrochemical Energy Conversion and Storage 16(1).
  • Liu, M.-Y., J. Tan, W.-S. Deng, Y.-F. Su, L. Chen and L. Liu (2019). Synthesis of spherical Ni0. 8Co0. 1Mn0. 1 (OH) 2 precursor via hydrothermal method assisted by microfluidics. IOP Conference Series: Earth and Environmental Science, IOP Publishing.
  • Myung, S.-T., M.-H. Lee, S. Komaba, N. Kumagai and Y.-K. Sun (2005). "Hydrothermal synthesis of layered Li [Ni1/3Co1/3Mn1/3] O2 as positive electrode material for lithium secondary battery." Electrochimica acta 50(24): 4800-4806.
  • Nayak, P. K., E. M. Erickson, F. Schipper, T. R. Penki, N. Munichandraiah, P. Adelhelm, H. Sclar, F. Amalraj, B. Markovsky and D. Aurbach (2018). "Review on challenges and recent advances in the electrochemical performance of high capacity Li‐and Mn‐rich cathode materials for Li‐ion batteries." Advanced Energy Materials 8(8): 1702397.
  • Nayaka, G., Y. Zhang, P. Dong, D. Wang, K. Pai, J. Manjanna, G. Santhosh, J. Duan, Z. Zhou and J. Xiao (2018). "Effective and environmentally friendly recycling process designed for LiCoO2 cathode powders of spent Li-ion batteries using mixture of mild organic acids." Waste Management 78: 51-57.
  • Park, J.-H., J.-S. Kim, E.-G. Shim, K.-W. Park, Y. T. Hong, Y.-S. Lee and S.-Y. Lee (2010). "Polyimide gel polymer electrolyte-nanoencapsulated LiCoO2 cathode materials for high-voltage Li-ion batteries." Electrochemistry Communications 12(8): 1099-1102.
  • Ryu, W.-H., S.-J. Lim, W.-K. Kim and H. Kwon (2014). "3-D dumbbell-like LiNi1/3Mn1/3Co1/3O2 cathode materials assembled with nano-building blocks for lithium-ion batteries." Journal of Power Sources 257: 186-191.
  • Shi, J. L., D. D. Xiao, M. Ge, X. Yu, Y. Chu, X. Huang, X. D. Zhang, Y. X. Yin, X. Q. Yang and Y. G. Guo (2018). "High‐Capacity Cathode Material with High Voltage for Li‐Ion Batteries." Advanced Materials 30(9): 1705575.
  • Shi, Y., M. Zhang, C. Fang and Y. S. Meng (2018). "Urea-based hydrothermal synthesis of LiNi0. 5Co0. 2Mn0. 3O2 cathode material for Li-ion battery." Journal of Power Sources 394: 114-121.
  • Tang, Y., Y. Lu and G. Luo (2016). "Controllable Hydrothermal Conversion from Ni-Co-Mn Carbonate Nanoparticles to Microspheres." Crystals 6(11): 156.
  • Wang, Z., Y. Yin, Y. Ren, Z. Wang, M. Gao, T. Ma, W. Zhuang, S. Lu, A. Fan and K. Amine (2017). "High performance lithium-manganese-rich cathode material with reduced impurities." Nano Energy 31: 247-257.
  • Yan, B., S. Lin, L. Kang, X. Song, Z. Tian and K. Jiang (2020). "Spinel structured LiMn2O4 prepared by laser annealing." Materials Technology: 1-6.
  • Zhu, L., G. Yang, J. Liu, C. Bao, L. Xie and X. Cao (2019). "Ethylene Glycol‐Assisted Sol‐Gel Method for Preparing LiNi1/3Co1/3Mn1/3O2 as Cathode Material for Lithium‐Ion Batteries with Excellent Electrochemical Performance." ChemistrySelect 4(39): 11475-11482.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Müslüm Demir 0000-0001-6842-8124

Yayımlanma Tarihi 30 Mart 2021
Gönderilme Tarihi 4 Mayıs 2020
Kabul Tarihi 25 Mart 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 1

Kaynak Göster

APA Demir, M. (2021). GREEN SYNTHESIS OF SPHERICAL-SHAPED Ni1/3Co1/3Mn1/3CO3 PARTICLES. Mühendislik Bilimleri Ve Tasarım Dergisi, 9(1), 330-335. https://doi.org/10.21923/jesd.726228