Araştırma Makalesi
BibTex RIS Kaynak Göster

FARKLI SİLİS VE ALÜMİN KAYNAKLARININ ATIK MERMER TOZU ESASLI ALKALİ İLE AKTİVE EDİLMİŞ HARÇLARIN ÖZELLİKLERİNE ETKİSİ

Yıl 2021, Cilt: 9 Sayı: 2, 396 - 405, 20.06.2021
https://doi.org/10.21923/jesd.884393

Öz

Bu çalışmada mermer kesim atölyesinden kesim atığı olarak doğaya bırakılan atık mermer tozları alkali ile aktive edilerek çimentosuz harçlar üretilmiştir. Üretilen harçların fiziksel ve mekanik özellikleri üzerine atık cam tozu ile kalsiyum alüminatlı çimentonun etkileri araştırılmıştır. Bu amaçla, mermer tozu yerine ağırlıkça %10, %20 ve %30 oranlarında atık cam tozu ile kalsiyum alüminatlı çimento ayrı ayrı veya %5+%5, %10+%10 ve %15+%15 oranlarında birlikte ikame edilerek harç karışımları oluşturulmuştur. Harçlar üzerinde yayılma tablası, birim ağırlık, ultrases geçiş hızı, eğilme ve basınç dayanımı deneyleri gerçekleştirilmiştir. Mermer tozu yerine %10+%10 oranlarında atık cam tozu ile kalsiyum alüminatlı çimento birlikte ikame edilen harçlarda en yüksek mekanik özellikler elde edilmiştir. Bu harçlarda 28 günlük eğilme ve basınç dayanımları sırasıyla 4.7 MPa 26.3 MPa olmuştur. Deney sonuçları mermer tozu yerine silis kaynağı olarak atık cam tozu ve alümin kaynağı olarak da kalsiyum alüminatlı çimento ikame edilmesinin, atık mermer tozunun çimentosuz harç üretimiyle geri kazanım potansiyelini artırdığını göstermiştir.

Kaynakça

  • Aliabdo, A.A., Elmoaty, A.E.M.A., Auda, E.M., 2014. Re-use of waste marble dust in the production of cement and concrete. Construction and Building Materials, 50, 28-41.
  • Atabey, İ.İ., Ay , C., 2021. Kalsiyum Alüminat Çimentosunun Farklı Kür Koşullarında Atık Cam Tozu Esaslı Geopolimer Harçların Fiziksel ve Mekanik Özelliklerine Etkisi, Avrupa Bilim ve Teknoloji Dergisi , (24), 184-189.
  • Binici, H., Kaplan H., Yilmaz S., 2007. Influence of marble and limestone dusts as additives on some mechanical properties of concrete. Scientific Research and Essay, 2(9), 372-379.
  • Bingöl, A.F., Balaneji, H.H., 2019. Yüksek Fırın Cürufu ve Zeolit Katkılı Betonların Sülfat Direncinin Belirlenmesi, Mühendislik Bilimleri ve Tasarım Dergisi, 7(2), 254-264.
  • Çelik, M.Y., Sabah, E., 2008. Geological and technical characterisation of Iscehisar (Afyon-Turkey) marble deposits and the impact of marble waste on environmental pollution. Journal of environmental management, 87(1), 106-116.
  • Çelikten, S., Atabey, İ. İ., 2021. Su içeriği ve ısıl kür süresinin atık bazalt tozu esaslı geopolimer harçların fiziksel ve mekanik özelliklerine etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 328-332.
  • Çelikten, S., Sarıdemir, M. Deneme, İ.Ö., 2019. Mechanical and microstructural properties of alkali-activated slag and slag+ fly ash mortars exposed to high temperature. Construction and Building Materials. 217, 50-61.
  • Coppola, B., Palmero, P., Montanaro, L., Tulliani, J.M., 2020. Alkali-activation of marble sludge: Influence of curing conditions and waste glass addition. Journal of the European Ceramic Society. 40(11), 3776-3787.
  • Davraz, M., Koru, M., Yanardağ, B., 2021. Kalsiyum Alüminat Çimentolu Hafif Betonun Fiziko-Mekanik ve Termal Özelliklerinin Araştırılması, Mühendislik Bilimleri ve Tasarım Dergisi, 9(1), 217-229.
  • Ergün A., 2011. Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete. Construction and Building Materials, 25(2), 806-812.
  • Fernández‐Jiménez, A., Palomo, A., Vazquez, T., Vallepu, R., Terai, T., Ikeda, K., 2008. Alkaline activation of blends of metakaolin and calcium aluminate. Journal of the American Ceramic Society, 91(4), 1231-1236.
  • Ghosh, R., Sagar, S. P., Kumar, A., Gupta, S. K., Kumar, S. 2018. Estimation of geopolymer concrete strength from ultrasonic pulse velocity (UPV) using high power pulser. Journal of Building Engineering, 16, 39-44.
  • Kaplan, M., 1958. Compressive strength and ultrasonic pulse velocity relationships for concrete in columns. ACI Journals, 54(2), 675–688.
  • Karaşahin, M., Terzi S., 2007. Evaluation of marble waste dust in the mixture of asphaltic concrete. Construction and Building Materials, 21(3), 616-620.
  • Kaya, M., Uysal, M., Yilmaz, K., Karahan, O., Atiş, C.D., 2020. Mechanical properties of class C and F fly ash geopolymer mortars. Gradevinar. 72(4), 297-309.
  • Kumar, V.S., Ganesan N., Indira P.V., 2017. Effect of Molarity of Sodium Hydroxide and Curing Method on the Compressive Strength of Ternary Blend Geopolymer Concrete. In IOP Conf. Ser. Earth Environ. Sci. Vol. 80, p. 12011.
  • Marjanović, N., Komljenović, M., Baščarević, Z., Nikolić, V., Petrović, R., 2015. Physical–mechanical and microstructural properties of alkali-activated fly ash–blast furnace slag blends. Ceramics International. 41(1), 1421-1435.
  • Omer, S. A., Demirboga, R., Khushefati, W. H., 2015. Relationship between compressive strength and UPV of GGBFS based geopolymer mortars exposed to elevated temperatures. Construction and Building Materials. 94, 189-195.
  • Provis, J.L., Bernal S.A., 2014. Geopolymers and related alkali-activated materials. Annual Review of Materials Research, 44, 299-327.
  • Puertas, F., Martı́nez-Ramı́rez S., Alonso S., Vazquez T., 2000. Alkali-activated fly ash/slag cements: strength behaviour and hydration products. Cement and concrete research, 30(10), 1625-1632.
  • Saboya, Jr. F., Xavier G.C., Alexandre J., 2007. The use of the powder marble by-product to enhance the properties of brick ceramic. Construction and Building Materials, 21(10), 1950-1960.
  • Salihoğlu, N.K., Salihoğlu, G., 2018. Marble sludge recycling by using geopolymerization technology. Journal of Hazardous, Toxic, and Radioactive Waste. 22(4):04018019.
  • Shirule, P.A., Rahman A., Gupta R.D., 2012. Partial replacement of cement with marble dust powder. International Journal of Advanced Engineering Research and Studies, 1(3), 2249.
  • Singh, M., Srivastava A., Bhunia D., 2019. Long term strength and durability parameters of hardened concrete on partially replacing cement by dried waste marble powder slurry. Construction and Building Materials, 198, 553-569.
  • Tekin, İ., 2016. Properties of NaOH activated geopolymer with marble, travertine and volcanic tuff wastes. Construction and Building Materials, 127, 607-617.
  • Terro, M.J., 2006. Properties of concrete made with recycled crushed glass at elevated temperatures. Building and Environment, 41(5), 633-639.
  • Topçu I. B., Canbaz M., 2004. Properties of concrete containing waste glass, Cement and Concrete Research, 34(2), 267–274.
  • TS EN 196-1, 2009. Çimento Deney Metotları, Bölüm 1: Dayanım Tayini, Türk Standartları Enstitüsü, Ankara.
  • TS EN 1015-3/A1, 2006. Kagir harcı- Deney metotları- Bölüm 3: Taze harç kıvamının tayini (yayılma tablası ile), Türk Standartları Enstitüsü, Ankara.
  • TS EN 1015-11/A1, 2013. Kâgir Harcı-Deney Metotları-Bölüm 11: Sertleşmiş Harcın Basınç ve Eğilme Dayanımının Tayini, Türk Standartları Enstitüsü, Ankara.
  • Vafaei, M., and Allahverdi, A., 2016. Influence of calcium aluminate cement on geopolymerization of natural pozzolan, Constr. Build. Mater., 28(1), 215-222.
  • Vafaei, M., and Allahverdi, A., 2017. “High strength geopolymer binder based on waste-glass powder,” Adv. Powder Technol., vol. 28, no. 1, pp. 215–222.
  • Wang, S.D., Pu X.C., Scrivener K.L., Pratt P.L., 1995. Alkali-activated slag cement and concrete: a review of properties and problems. Advances in Cement Research, 7(27), 93-102.
  • Wang, H.Y., Huang W.L., 2010. Durability of self-consolidating concrete using waste LCD glass. Construction and Building Materials, 24(6), 1008-1013.
  • Yılmaz, H., Sallı Bideci, Ö., Bideci, A., 2018. Pomza Agregalı Hafif Beton Özelliklerine Kalsiyum Alüminat Çimentosunun Etkisi, Mühendislik Bilimleri ve Tasarım Dergisi, 6(1), 154-160.
  • Yurt, Ü., 2020. An experimental study on fracture energy of alkali activated slag composites incorporated different fibers. Journal of Building Engineering, (32) 101519.
  • Yurt, Ü, Emiroğlu M., 2020. Zeolit İkameli Geopolimer Betonlarda Kür Şartlarının Etkileri. Akademik Platform Mühendislik ve Fen Bilimleri Dergisi, 8(2), 396-402.
  • Zorluer, I., Demirbas A., 2013. Use of marble dust and fly ash in stabilization of base material. Science and Engineering of Composite Materials, 20(1), 47-55.

THE EFFECT OF DIFFERENT SILICA AND ALUMIN SOURCES ON THE PROPERTIES OF THE WASTE MARBLE POWDER BASED ALKALI-ACTIVATED MORTARS

Yıl 2021, Cilt: 9 Sayı: 2, 396 - 405, 20.06.2021
https://doi.org/10.21923/jesd.884393

Öz

In this study, cementless mortars are produced with activation of waste marble dust, a waste material disposed from stone cutting plants, The influences of waste glass powder and calcium aluminate cement on the physical and mechanical properties of the mortars. For this purpose, mortar mixtures are composed replacing 10%, 20% and 30% of waste marble dust by waste glass powder and calcium aluminate cement separately and also together at the 5%+5%, 10%+10% and 15%+15% proportions by weight. The flow table, unit weight, ultrasound pulse velocity, flexural strength and compressive strength test are performed on the mortars. The highest mechanical properties are achieved on the mortars including 10%+10% waste glass powder + calcium aluminate cement by waste marble dust. The flexural and compressive strength of these mortars are 4.7 MPa and 26.3 MPa at the age of 28 days, respectively. The experimental results showed that substituting waste glass powder as a silica source and calcium aluminate cement as a source of alumina instead of marble dust, increased the recovery potential of waste marble powder through cementless mortar production.

Kaynakça

  • Aliabdo, A.A., Elmoaty, A.E.M.A., Auda, E.M., 2014. Re-use of waste marble dust in the production of cement and concrete. Construction and Building Materials, 50, 28-41.
  • Atabey, İ.İ., Ay , C., 2021. Kalsiyum Alüminat Çimentosunun Farklı Kür Koşullarında Atık Cam Tozu Esaslı Geopolimer Harçların Fiziksel ve Mekanik Özelliklerine Etkisi, Avrupa Bilim ve Teknoloji Dergisi , (24), 184-189.
  • Binici, H., Kaplan H., Yilmaz S., 2007. Influence of marble and limestone dusts as additives on some mechanical properties of concrete. Scientific Research and Essay, 2(9), 372-379.
  • Bingöl, A.F., Balaneji, H.H., 2019. Yüksek Fırın Cürufu ve Zeolit Katkılı Betonların Sülfat Direncinin Belirlenmesi, Mühendislik Bilimleri ve Tasarım Dergisi, 7(2), 254-264.
  • Çelik, M.Y., Sabah, E., 2008. Geological and technical characterisation of Iscehisar (Afyon-Turkey) marble deposits and the impact of marble waste on environmental pollution. Journal of environmental management, 87(1), 106-116.
  • Çelikten, S., Atabey, İ. İ., 2021. Su içeriği ve ısıl kür süresinin atık bazalt tozu esaslı geopolimer harçların fiziksel ve mekanik özelliklerine etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 328-332.
  • Çelikten, S., Sarıdemir, M. Deneme, İ.Ö., 2019. Mechanical and microstructural properties of alkali-activated slag and slag+ fly ash mortars exposed to high temperature. Construction and Building Materials. 217, 50-61.
  • Coppola, B., Palmero, P., Montanaro, L., Tulliani, J.M., 2020. Alkali-activation of marble sludge: Influence of curing conditions and waste glass addition. Journal of the European Ceramic Society. 40(11), 3776-3787.
  • Davraz, M., Koru, M., Yanardağ, B., 2021. Kalsiyum Alüminat Çimentolu Hafif Betonun Fiziko-Mekanik ve Termal Özelliklerinin Araştırılması, Mühendislik Bilimleri ve Tasarım Dergisi, 9(1), 217-229.
  • Ergün A., 2011. Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete. Construction and Building Materials, 25(2), 806-812.
  • Fernández‐Jiménez, A., Palomo, A., Vazquez, T., Vallepu, R., Terai, T., Ikeda, K., 2008. Alkaline activation of blends of metakaolin and calcium aluminate. Journal of the American Ceramic Society, 91(4), 1231-1236.
  • Ghosh, R., Sagar, S. P., Kumar, A., Gupta, S. K., Kumar, S. 2018. Estimation of geopolymer concrete strength from ultrasonic pulse velocity (UPV) using high power pulser. Journal of Building Engineering, 16, 39-44.
  • Kaplan, M., 1958. Compressive strength and ultrasonic pulse velocity relationships for concrete in columns. ACI Journals, 54(2), 675–688.
  • Karaşahin, M., Terzi S., 2007. Evaluation of marble waste dust in the mixture of asphaltic concrete. Construction and Building Materials, 21(3), 616-620.
  • Kaya, M., Uysal, M., Yilmaz, K., Karahan, O., Atiş, C.D., 2020. Mechanical properties of class C and F fly ash geopolymer mortars. Gradevinar. 72(4), 297-309.
  • Kumar, V.S., Ganesan N., Indira P.V., 2017. Effect of Molarity of Sodium Hydroxide and Curing Method on the Compressive Strength of Ternary Blend Geopolymer Concrete. In IOP Conf. Ser. Earth Environ. Sci. Vol. 80, p. 12011.
  • Marjanović, N., Komljenović, M., Baščarević, Z., Nikolić, V., Petrović, R., 2015. Physical–mechanical and microstructural properties of alkali-activated fly ash–blast furnace slag blends. Ceramics International. 41(1), 1421-1435.
  • Omer, S. A., Demirboga, R., Khushefati, W. H., 2015. Relationship between compressive strength and UPV of GGBFS based geopolymer mortars exposed to elevated temperatures. Construction and Building Materials. 94, 189-195.
  • Provis, J.L., Bernal S.A., 2014. Geopolymers and related alkali-activated materials. Annual Review of Materials Research, 44, 299-327.
  • Puertas, F., Martı́nez-Ramı́rez S., Alonso S., Vazquez T., 2000. Alkali-activated fly ash/slag cements: strength behaviour and hydration products. Cement and concrete research, 30(10), 1625-1632.
  • Saboya, Jr. F., Xavier G.C., Alexandre J., 2007. The use of the powder marble by-product to enhance the properties of brick ceramic. Construction and Building Materials, 21(10), 1950-1960.
  • Salihoğlu, N.K., Salihoğlu, G., 2018. Marble sludge recycling by using geopolymerization technology. Journal of Hazardous, Toxic, and Radioactive Waste. 22(4):04018019.
  • Shirule, P.A., Rahman A., Gupta R.D., 2012. Partial replacement of cement with marble dust powder. International Journal of Advanced Engineering Research and Studies, 1(3), 2249.
  • Singh, M., Srivastava A., Bhunia D., 2019. Long term strength and durability parameters of hardened concrete on partially replacing cement by dried waste marble powder slurry. Construction and Building Materials, 198, 553-569.
  • Tekin, İ., 2016. Properties of NaOH activated geopolymer with marble, travertine and volcanic tuff wastes. Construction and Building Materials, 127, 607-617.
  • Terro, M.J., 2006. Properties of concrete made with recycled crushed glass at elevated temperatures. Building and Environment, 41(5), 633-639.
  • Topçu I. B., Canbaz M., 2004. Properties of concrete containing waste glass, Cement and Concrete Research, 34(2), 267–274.
  • TS EN 196-1, 2009. Çimento Deney Metotları, Bölüm 1: Dayanım Tayini, Türk Standartları Enstitüsü, Ankara.
  • TS EN 1015-3/A1, 2006. Kagir harcı- Deney metotları- Bölüm 3: Taze harç kıvamının tayini (yayılma tablası ile), Türk Standartları Enstitüsü, Ankara.
  • TS EN 1015-11/A1, 2013. Kâgir Harcı-Deney Metotları-Bölüm 11: Sertleşmiş Harcın Basınç ve Eğilme Dayanımının Tayini, Türk Standartları Enstitüsü, Ankara.
  • Vafaei, M., and Allahverdi, A., 2016. Influence of calcium aluminate cement on geopolymerization of natural pozzolan, Constr. Build. Mater., 28(1), 215-222.
  • Vafaei, M., and Allahverdi, A., 2017. “High strength geopolymer binder based on waste-glass powder,” Adv. Powder Technol., vol. 28, no. 1, pp. 215–222.
  • Wang, S.D., Pu X.C., Scrivener K.L., Pratt P.L., 1995. Alkali-activated slag cement and concrete: a review of properties and problems. Advances in Cement Research, 7(27), 93-102.
  • Wang, H.Y., Huang W.L., 2010. Durability of self-consolidating concrete using waste LCD glass. Construction and Building Materials, 24(6), 1008-1013.
  • Yılmaz, H., Sallı Bideci, Ö., Bideci, A., 2018. Pomza Agregalı Hafif Beton Özelliklerine Kalsiyum Alüminat Çimentosunun Etkisi, Mühendislik Bilimleri ve Tasarım Dergisi, 6(1), 154-160.
  • Yurt, Ü., 2020. An experimental study on fracture energy of alkali activated slag composites incorporated different fibers. Journal of Building Engineering, (32) 101519.
  • Yurt, Ü, Emiroğlu M., 2020. Zeolit İkameli Geopolimer Betonlarda Kür Şartlarının Etkileri. Akademik Platform Mühendislik ve Fen Bilimleri Dergisi, 8(2), 396-402.
  • Zorluer, I., Demirbas A., 2013. Use of marble dust and fly ash in stabilization of base material. Science and Engineering of Composite Materials, 20(1), 47-55.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Serhat Çelikten 0000-0001-8154-7590

İsmail İsa Atabey 0000-0002-7026-5579

Yayımlanma Tarihi 20 Haziran 2021
Gönderilme Tarihi 21 Şubat 2021
Kabul Tarihi 14 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 2

Kaynak Göster

APA Çelikten, S., & Atabey, İ. İ. (2021). FARKLI SİLİS VE ALÜMİN KAYNAKLARININ ATIK MERMER TOZU ESASLI ALKALİ İLE AKTİVE EDİLMİŞ HARÇLARIN ÖZELLİKLERİNE ETKİSİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 9(2), 396-405. https://doi.org/10.21923/jesd.884393