Araştırma Makalesi
BibTex RIS Kaynak Göster

DESIGN OF A KNEE EXOSKELETON ASSISTING DURING WALKING, SIT-TO-STAND, AND STAIR ASCENDING

Yıl 2021, Cilt: 9 Sayı: 3, 1003 - 1014, 21.09.2021
https://doi.org/10.21923/jesd.788693

Öz

In this study, we present a knee exoskeleton that assists weight acceptance in walking, sit-to-stand and stair ascending. Working principle of the exoskeleton device is inspired from the bio-mechanical data of natural human gait, sit to stance and stair ascent motions. First, we analyze the natural gait data to identify the weight acceptance behavior of the knee joint. Then we build a model for sit to stand motion with an elastic element. After that, stair ascent data is analyzed in a similar manner. Then, we define the appropriate elastic elements, their coefficients and motor requirements if necessary, for these specific tasks. Finally, we present the CAD model of the proposed knee exoskeleton.

Destekleyen Kurum

Abdullah Gul University - BAP

Proje Numarası

FAB-2017-89

Kaynakça

  • Againer-ski, 2017. Againer-ski | Maximize your skiing. [Online]. Available: http://againer-ski.com/?v=ebe021079e5a.
  • Agrawal, S.K., Banala, S.K., Fattah, A., 2006. A gravity balancing passive exoskeleton for the human leg. Proceedings of Robotics: Science and Systems.
  • Bacek, T., Unal, R., Moltedo, M., Junius, K., Cuypers, H., Vanderborght, B., Lefeber, D., 2015. Conceptual design of a novel variable stiffness actuator for use in lower limb exoskeletons. IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, 583-588.
  • Banala, S.K., Agrawal, S.K., Scholz, J.P., 2007. Active Leg Exoskeleton (ALEX) for Gait Rehabilitation of Motor-Impaired Patients. IEEE International Conference on Rehabilitation Robotics (ICORR), 401-407.
  • Baser, O., Sekerci, B., Kizilhan, H., Kilic, E., 2018. İnsan ve Alt Uzuv Dış İskelet Robotun Matlab Simmechanıcs Ortamında Modellenmesi ve Etkileşim Kuvvetlerinin Minimize Edilmesi Kontrol Çalışması. Mühendislik Bilimleri ve Tasarım Dergisi, 6(3), 365 – 374.
  • Baser, O., Kizilhan, H., Kilic, E., 2019. Biomimetic compliant lower limb exoskeleton (BioComEx) and its experimental evaluation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(5), 226.
  • Baser, O., Kizilhan, H., Kilic, E., 2020. Employing variable impedance stiffness damping hybrid actuators on lower limb exoskeleton robots for stable and safe walking trajectory tracking. Journal of Mechanical Science and Technology, 34(6), 2597–2607.
  • Beyl, P., Naudet, J., van Ham, R., Lefeber, D., 2007. Mechanical design of an active knee orthosis for gait rehabilitation. IEEE 10th International Conference on Rehabilitation Robotics (ICORR), 100–105.
  • Cai, V.A., Bidaud, P., Hayward, V., Gosselin, F., Desailly, E., 2011. Self-adjusting, isostatic exoskeleton for the human knee joint. Conference Proceedings IEEE Engineering in Medicine and Biology Society, 612-618.
  • Celebi, B., Yalcin, M., Patoglu, V., 2013. AssistOn-Knee: A self-aligning knee exoskeleton. IEEE/RSJ International Conference on Intelligent Robots and Systems, 996-1002.
  • Cheng, H.S., Ju, M.S., Lin, C.C.K., 2003. Improving Elbow Torque Output of Stroke Patients with Assistive Torque Controlled by EMG Signals. Journal of Biomechanical Engineering, 125(6), 881.
  • Cheng P-T, Wu S-H, Liaw M-Y, Wong AMK, Tang F-T, 2001. Symmetrical body-weight distribution training in stroke patients and its effect on fall prevention. 82(12), 1650-1654.
  • Demiray, M.A., Baser, O., Kilic, E., 2014. Alt Uzuv Dış İskelet Robot Eklemlerinde Kararlılık İçin Sönümleme Katsayıları ve Momentlerinin Hesaplanması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 18 (3), 34-51.
  • Dollar, A.M., Herr, H., 2008. Design of a quasi-passive knee exoskeleton to assist running. IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 747–754.
  • Erdogan, A., Celebi, B., Satici A.C., Patoglu, V., 2016. AssistOn-Ankle: A Reconfigurable Ankle Exoskeleton with Series-Elastic Actuation. Autonomous Robots, 41, 1–16.
  • Hu, X.L., Tong, K.Y., 2009. Interactive Rehabilitation Robot for Hand Function Training. IEEE International Conference on Rehabilitation Robotics (ICORR), 777–780.
  • Highsmith, M. J., Kahle, J. T., Carey, S. L., Lura, D. J., Dubey, R. V., Csavina, K. R., and Quillen, W. S., 2011. Kinetic Asymmetry in Transfemoral Amputees While Performing Sit to Stand and Stand to Sit Movements. Gait and Posture, 34(1), 86–91.
  • Indego, 2017. Indego – Powering People Forward [Online]. Available: http://www.indego.com/indego/en/home.
  • Jezernik, S., Colombo, G., Keller, T., Frueh, H., Morari, M., 2003. Robotic Orthosis Lokomat: A Rehabilitation and Research Tool. Neuromodulation, 6(2), 108–115.
  • Kazerooni, H., Steger, R., Huang, L., 2006. Hybrid Control of the Berkeley Lower Extremity Exoskeleton (BLEEX). International Journal of Robotics Research, 25(5–6), 561–573.
  • Karavas, N., Ajoudani, A., Tsagarakis, N., Saglia, J., Bicchi, A., Caldwell, D., 2015. Tele-impedance based assistive control for a compliant knee exoskeleton. Robotics and Autonomous Systems, 73, 78-90.
  • Kiguchi, K., Iwami, K., Yasuda, M., Watanabe, K., Fukuda, T., 2003. An exoskeletal robot for human shoulder joint motion assist. IEEE/ASME Transactions on Mechatronics, 8(1), 125-135.
  • Kim, J.-H., Shim, M., Ahn, D. H., Son, B. J., Kim, S.-Y., Kim, D. Y., … Cho, B.-K., 2015. Design of a Knee Exoskeleton Using Foot Pressure and Knee Torque Sensors. International Journal of Advanced Robotic Systems.
  • Kizilhan, H., Baser, O., Kilic, E., Ulusoy, N., 2014. Dış İskelet Robot Eklemleri için Antagonistik ve Öngerilmeli Tip Sertliği Değiştirilebilir Eyleyici Tasarımlarında Güç Gereksinimi ve Enerji Sarfiyatı Karşılaştırması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 18(3), 77-91.
  • Lee, M., Wong, M., Tang, F., Cheng, P., Lin, P., 1997. Comparison of Balance Responses and Motor Patterns During Sit-To-Stand Task with Functional Mobility in Stroke Patients. American Journal of Physical Medicine & Rehabilitation, 76(5), 401-410.
  • Liu, X., Low, K.H., 2004. Development and preliminary study of the NTU lower extremity exoskeleton. IEEE Conference on Cybernetics and Intelligent Systems, 2, 1243–1247.
  • Lockheed Martin, 2017. Exoskeleton Technologies: Industrial. [Online] Available: https://www.lockheedmartin.com/us/products/exoskeleton/industrial.html.
  • Paine, N., Oh, S., Sentis, L., 2014. Design and control considerations for high-performance series elastic actuators. IEEE/ASME Transactions on Mechatronics, 19(3), 1080-1091.
  • Plagenhoef, S., Evans, F.G., Abdelnour, T., 1983. Anatomical Data for Analyzing Human Motion. Research Quarterly for Exercise and Sport, 54(2), 169-178.
  • Pratt, J.E., Krupp, B.T., Morse, C.J., Collins, S.H., 2004. The RoboKnee: an exoskeleton for enhancing strength and endurance during walking. IEEE International Conference on Robotics Automation (ICRA), 2430–2435.
  • ReWalk, 2017. ReWalk 6.0 – Home. [Online]. Available: http://rewalk.com/.
  • Rex, 2017. Rex Bionics - Step into the future. [Online]. Available: https://www.rexbionics.com/.
  • Riener, R., Rabuffetti, M., Frigo, C., 2002. Stair ascent and descent at different inclinations. Gait & Posture, 15(1), 32–44.
  • Sasaki, D., Noritsugu, T., Takaiwa, M., 2005. Development of active support splint driven by pneumatic soft actuator (ASSIST). IEEE International Conference on Robotics & Automation (ICRA), 520–525.
  • Shamaei, K., Cenciarini, M., Adams, A.A., Gregorczyk, K.N., Schiffman, J.M., Dollar, A.M., 2014. Design and evaluation of a quasi-passive knee exoskeleton for investigation of motor adaptation in lower extremity joints. IEEE Transactions on Biomedical Engineering, 61(6), 1809–1821.
  • Shepherd M.K., Rouse, E.J., 2017. Design and Validation of a Torque-Controllable Knee Exoskeleton for Sit-to-Stand Assistance. IEEE/ASME Transactions on Mechatronics, 22(4), 1695-1704.
  • Sulzer, J.S., Roiz, R.A., Peshkin, M.A., Patton, J.L., 2009. A Highly Backdrivable, Lightweight Knee Actuator for Investigating Gait in Stroke. IEEE Transactions on Robotics, 25(3), 539-548.
  • van Dijk, W., van der Kooij, H., 2014. XPED2: A Passive Exoskeleton with Artificial Tendons. IEEE Robotics & Automation Magazine, 21(4), 56-61.
  • van der Kooij, H., Veneman, J., Ekkelenkamp, R., 2006. Design of a compliantly actuated exo-skeleton for an impedance-controlled gait trainer robot. IEEE Engineering in Medicine and Biology Society (EMBS), 189-193.
  • Wang, D., Lee, K.M., Ji, J., 2016. A Passive Gait-Based Weight-Support Lower Extremity Exoskeleton with Compliant Joints. IEEE Transactions on Robotics, 32(4), 933–942.
  • Wilken, J. M., Sinitski, E.H., and Bagg, E.A., 2011. The Role of Lower Extremity Joint Powers in Successful Stair Ambulation. Gait and Posture, 34(1), 142–144.
  • Winter, D.A., 1991. The Biomechanics and Motor Control of Human Gait. University of Waterloo Press.
  • Wong, C.K., Bishop, L., Stein, J., 2012. A wearable robotic knee orthosis for gait training. Prosthetics and Orthotics International, 36(1), 113-120.
  • Wretenberg, P., Arborelius, U.P., 1994. Power and work produced in different leg muscle groups when rising from a chair. European Journal of Applied Physiology, 68, 413–417.
  • Wu, J., Gao, J., Song, R., Li, R., Li, Y., 2016. The design and control of a 3DOF lower limb rehabilitation robot. Mechatronics, 33, 13–22.
  • Zissimopoulos, A., Fatone, S., and Gard, S. A., 2007. Biomechanical and Energetic Effects of a Stance-Control Orthotic Knee Joint. Journal of Rehabilitation Research and Development, 44(4), 503.

YÜRÜME, OTURMA-KALKMA VE MERDİVEN ÇIKMA SIRASINDA YARDIMCI OLAN DİZ DIŞ İSKELETİNİN TASARIMI

Yıl 2021, Cilt: 9 Sayı: 3, 1003 - 1014, 21.09.2021
https://doi.org/10.21923/jesd.788693

Öz

Bu çalışmada, yürümede, ayağa kalkmada ve merdiven çıkmada ağırlık kabulüne yardımcı olan bir diz dış iskeletini sunuyoruz. Dış iskelet cihazının çalışma prensibi, doğal insan yürüyüşü, ayağa kalkma ve merdiven çıkma hareketlerinin biyo-mekanik verilerinden esinlenmiştir. İlk olarak, diz ekleminin ağırlık kabul davranışını belirlemek için doğal yürüyüş verileri analiz edilmiştir. Ardından, elastik bir elemanla ayağa kalkma hareketi için bir model oluşturulmuştur. Bundan sonra, merdiven çıkma verileri benzer şekilde analiz edilmiştir. Ardından, bu hareketler için uygun elastik elemanları, bunların elastik katsayıları ve gerekirse motor gereksinimleri tanımlanmıştır. Son olarak, önerilen diz dış iskeletinin CAD modeli sunulmuştur.

Proje Numarası

FAB-2017-89

Kaynakça

  • Againer-ski, 2017. Againer-ski | Maximize your skiing. [Online]. Available: http://againer-ski.com/?v=ebe021079e5a.
  • Agrawal, S.K., Banala, S.K., Fattah, A., 2006. A gravity balancing passive exoskeleton for the human leg. Proceedings of Robotics: Science and Systems.
  • Bacek, T., Unal, R., Moltedo, M., Junius, K., Cuypers, H., Vanderborght, B., Lefeber, D., 2015. Conceptual design of a novel variable stiffness actuator for use in lower limb exoskeletons. IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, 583-588.
  • Banala, S.K., Agrawal, S.K., Scholz, J.P., 2007. Active Leg Exoskeleton (ALEX) for Gait Rehabilitation of Motor-Impaired Patients. IEEE International Conference on Rehabilitation Robotics (ICORR), 401-407.
  • Baser, O., Sekerci, B., Kizilhan, H., Kilic, E., 2018. İnsan ve Alt Uzuv Dış İskelet Robotun Matlab Simmechanıcs Ortamında Modellenmesi ve Etkileşim Kuvvetlerinin Minimize Edilmesi Kontrol Çalışması. Mühendislik Bilimleri ve Tasarım Dergisi, 6(3), 365 – 374.
  • Baser, O., Kizilhan, H., Kilic, E., 2019. Biomimetic compliant lower limb exoskeleton (BioComEx) and its experimental evaluation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(5), 226.
  • Baser, O., Kizilhan, H., Kilic, E., 2020. Employing variable impedance stiffness damping hybrid actuators on lower limb exoskeleton robots for stable and safe walking trajectory tracking. Journal of Mechanical Science and Technology, 34(6), 2597–2607.
  • Beyl, P., Naudet, J., van Ham, R., Lefeber, D., 2007. Mechanical design of an active knee orthosis for gait rehabilitation. IEEE 10th International Conference on Rehabilitation Robotics (ICORR), 100–105.
  • Cai, V.A., Bidaud, P., Hayward, V., Gosselin, F., Desailly, E., 2011. Self-adjusting, isostatic exoskeleton for the human knee joint. Conference Proceedings IEEE Engineering in Medicine and Biology Society, 612-618.
  • Celebi, B., Yalcin, M., Patoglu, V., 2013. AssistOn-Knee: A self-aligning knee exoskeleton. IEEE/RSJ International Conference on Intelligent Robots and Systems, 996-1002.
  • Cheng, H.S., Ju, M.S., Lin, C.C.K., 2003. Improving Elbow Torque Output of Stroke Patients with Assistive Torque Controlled by EMG Signals. Journal of Biomechanical Engineering, 125(6), 881.
  • Cheng P-T, Wu S-H, Liaw M-Y, Wong AMK, Tang F-T, 2001. Symmetrical body-weight distribution training in stroke patients and its effect on fall prevention. 82(12), 1650-1654.
  • Demiray, M.A., Baser, O., Kilic, E., 2014. Alt Uzuv Dış İskelet Robot Eklemlerinde Kararlılık İçin Sönümleme Katsayıları ve Momentlerinin Hesaplanması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 18 (3), 34-51.
  • Dollar, A.M., Herr, H., 2008. Design of a quasi-passive knee exoskeleton to assist running. IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 747–754.
  • Erdogan, A., Celebi, B., Satici A.C., Patoglu, V., 2016. AssistOn-Ankle: A Reconfigurable Ankle Exoskeleton with Series-Elastic Actuation. Autonomous Robots, 41, 1–16.
  • Hu, X.L., Tong, K.Y., 2009. Interactive Rehabilitation Robot for Hand Function Training. IEEE International Conference on Rehabilitation Robotics (ICORR), 777–780.
  • Highsmith, M. J., Kahle, J. T., Carey, S. L., Lura, D. J., Dubey, R. V., Csavina, K. R., and Quillen, W. S., 2011. Kinetic Asymmetry in Transfemoral Amputees While Performing Sit to Stand and Stand to Sit Movements. Gait and Posture, 34(1), 86–91.
  • Indego, 2017. Indego – Powering People Forward [Online]. Available: http://www.indego.com/indego/en/home.
  • Jezernik, S., Colombo, G., Keller, T., Frueh, H., Morari, M., 2003. Robotic Orthosis Lokomat: A Rehabilitation and Research Tool. Neuromodulation, 6(2), 108–115.
  • Kazerooni, H., Steger, R., Huang, L., 2006. Hybrid Control of the Berkeley Lower Extremity Exoskeleton (BLEEX). International Journal of Robotics Research, 25(5–6), 561–573.
  • Karavas, N., Ajoudani, A., Tsagarakis, N., Saglia, J., Bicchi, A., Caldwell, D., 2015. Tele-impedance based assistive control for a compliant knee exoskeleton. Robotics and Autonomous Systems, 73, 78-90.
  • Kiguchi, K., Iwami, K., Yasuda, M., Watanabe, K., Fukuda, T., 2003. An exoskeletal robot for human shoulder joint motion assist. IEEE/ASME Transactions on Mechatronics, 8(1), 125-135.
  • Kim, J.-H., Shim, M., Ahn, D. H., Son, B. J., Kim, S.-Y., Kim, D. Y., … Cho, B.-K., 2015. Design of a Knee Exoskeleton Using Foot Pressure and Knee Torque Sensors. International Journal of Advanced Robotic Systems.
  • Kizilhan, H., Baser, O., Kilic, E., Ulusoy, N., 2014. Dış İskelet Robot Eklemleri için Antagonistik ve Öngerilmeli Tip Sertliği Değiştirilebilir Eyleyici Tasarımlarında Güç Gereksinimi ve Enerji Sarfiyatı Karşılaştırması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 18(3), 77-91.
  • Lee, M., Wong, M., Tang, F., Cheng, P., Lin, P., 1997. Comparison of Balance Responses and Motor Patterns During Sit-To-Stand Task with Functional Mobility in Stroke Patients. American Journal of Physical Medicine & Rehabilitation, 76(5), 401-410.
  • Liu, X., Low, K.H., 2004. Development and preliminary study of the NTU lower extremity exoskeleton. IEEE Conference on Cybernetics and Intelligent Systems, 2, 1243–1247.
  • Lockheed Martin, 2017. Exoskeleton Technologies: Industrial. [Online] Available: https://www.lockheedmartin.com/us/products/exoskeleton/industrial.html.
  • Paine, N., Oh, S., Sentis, L., 2014. Design and control considerations for high-performance series elastic actuators. IEEE/ASME Transactions on Mechatronics, 19(3), 1080-1091.
  • Plagenhoef, S., Evans, F.G., Abdelnour, T., 1983. Anatomical Data for Analyzing Human Motion. Research Quarterly for Exercise and Sport, 54(2), 169-178.
  • Pratt, J.E., Krupp, B.T., Morse, C.J., Collins, S.H., 2004. The RoboKnee: an exoskeleton for enhancing strength and endurance during walking. IEEE International Conference on Robotics Automation (ICRA), 2430–2435.
  • ReWalk, 2017. ReWalk 6.0 – Home. [Online]. Available: http://rewalk.com/.
  • Rex, 2017. Rex Bionics - Step into the future. [Online]. Available: https://www.rexbionics.com/.
  • Riener, R., Rabuffetti, M., Frigo, C., 2002. Stair ascent and descent at different inclinations. Gait & Posture, 15(1), 32–44.
  • Sasaki, D., Noritsugu, T., Takaiwa, M., 2005. Development of active support splint driven by pneumatic soft actuator (ASSIST). IEEE International Conference on Robotics & Automation (ICRA), 520–525.
  • Shamaei, K., Cenciarini, M., Adams, A.A., Gregorczyk, K.N., Schiffman, J.M., Dollar, A.M., 2014. Design and evaluation of a quasi-passive knee exoskeleton for investigation of motor adaptation in lower extremity joints. IEEE Transactions on Biomedical Engineering, 61(6), 1809–1821.
  • Shepherd M.K., Rouse, E.J., 2017. Design and Validation of a Torque-Controllable Knee Exoskeleton for Sit-to-Stand Assistance. IEEE/ASME Transactions on Mechatronics, 22(4), 1695-1704.
  • Sulzer, J.S., Roiz, R.A., Peshkin, M.A., Patton, J.L., 2009. A Highly Backdrivable, Lightweight Knee Actuator for Investigating Gait in Stroke. IEEE Transactions on Robotics, 25(3), 539-548.
  • van Dijk, W., van der Kooij, H., 2014. XPED2: A Passive Exoskeleton with Artificial Tendons. IEEE Robotics & Automation Magazine, 21(4), 56-61.
  • van der Kooij, H., Veneman, J., Ekkelenkamp, R., 2006. Design of a compliantly actuated exo-skeleton for an impedance-controlled gait trainer robot. IEEE Engineering in Medicine and Biology Society (EMBS), 189-193.
  • Wang, D., Lee, K.M., Ji, J., 2016. A Passive Gait-Based Weight-Support Lower Extremity Exoskeleton with Compliant Joints. IEEE Transactions on Robotics, 32(4), 933–942.
  • Wilken, J. M., Sinitski, E.H., and Bagg, E.A., 2011. The Role of Lower Extremity Joint Powers in Successful Stair Ambulation. Gait and Posture, 34(1), 142–144.
  • Winter, D.A., 1991. The Biomechanics and Motor Control of Human Gait. University of Waterloo Press.
  • Wong, C.K., Bishop, L., Stein, J., 2012. A wearable robotic knee orthosis for gait training. Prosthetics and Orthotics International, 36(1), 113-120.
  • Wretenberg, P., Arborelius, U.P., 1994. Power and work produced in different leg muscle groups when rising from a chair. European Journal of Applied Physiology, 68, 413–417.
  • Wu, J., Gao, J., Song, R., Li, R., Li, Y., 2016. The design and control of a 3DOF lower limb rehabilitation robot. Mechatronics, 33, 13–22.
  • Zissimopoulos, A., Fatone, S., and Gard, S. A., 2007. Biomechanical and Energetic Effects of a Stance-Control Orthotic Knee Joint. Journal of Rehabilitation Research and Development, 44(4), 503.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik, Makine Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

M. Furkan Bilgi

Ramazan Ünal 0000-0002-2129-797X

Proje Numarası FAB-2017-89
Yayımlanma Tarihi 21 Eylül 2021
Gönderilme Tarihi 31 Ağustos 2020
Kabul Tarihi 31 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 3

Kaynak Göster

APA Bilgi, M. F., & Ünal, R. (2021). DESIGN OF A KNEE EXOSKELETON ASSISTING DURING WALKING, SIT-TO-STAND, AND STAIR ASCENDING. Mühendislik Bilimleri Ve Tasarım Dergisi, 9(3), 1003-1014. https://doi.org/10.21923/jesd.788693