Araştırma Makalesi
BibTex RIS Kaynak Göster

HTLS İLETKENLERİN TEKNOEKONOMİK ANALİZİ

Yıl 2022, Cilt: 10 Sayı: 3, 1128 - 1140, 30.09.2022
https://doi.org/10.21923/jesd.1073763

Öz

Yüksek gerilim iletkenleri, enerji talebinde göz önünde bulundurulması gereken en önemli unsurlardandır. Günümüzde elektrik enerjisine karşı artan talep, güç sistemlerinde kayıp artışı, hat kapasitelerinin yetersizliği, sehim vb. sorunları meydana getirmektedir. Bu sorunları çözmenin birkaç yolu bulunmaktadır. Çözümlerden biri ise, günümüzde kullanılan konvansiyonel iletkenleri, Yüksek Sıcaklık Düşük Sehimli (HTLS) iletkenlerle değiştirerek, iletkenlerde sarkma (sehim) miktarını minimuma indirmek ve daha yüksek sıcaklıklarda çalışabilen HTLS iletkenler üzerinden daha fazla akım iletimi sağlanarak, mevcut durumdan daha fazla akım taşıma kapasitesi elde etmeyi amaçlamaktadır. Fakat bu işlemi yapmadan önce bir de bunun maliyet tarafı ele alınmalıdır. Bu çalışmada, konvansiyonel iletkenler ile HTLS iletkenler teknik ve ekonomik açıdan incelenmiştir. Elde edilen sonuçlara baktığımızda da HTLS iletkenlerin teknik ve maliyet açısından birçok konuda konvansiyonel iletkenlere göre daha avantajlı olduğu görülmüştür.

Kaynakça

  • Akgöl, O., Kıstı, E.A., Karaaslan, M., Ünal, E., 2018. Kompozit Özlü Alüminyum İletkenlerin (ACCC) üretilmesi ve iletkenliğinin yükseltilmesi için yapılan çalışmalar. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 9(2), 657-669.
  • Albizu, I., Fernandez, E., Mazon, A.J., Bedialauneta, M., Sagastabeitia, K., 2011. Overhead conductor monitoring system for the evaluation of the low sag behavior. In 2011 IEEE Trondheim PowerTech, 1-6.
  • Albizu, I., Mazón, A.J., Valverde, V., Buigues, G., 2010. Aspects to take into account in the application of mechanical calculation to high-temperature low-sag conductors. IET generation, transmission & distribution, 4(5), 631-640.
  • Albizu, I., Mazon, A.J., Zamora, I., 2005. Methods for increasing the rating of overhead lines. In 2005 IEEE Russia Power Tech, 1-6.
  • Arcia-Garibaldi, G., Cruz-Romero, P., Gómez-Expósito, A., 2018. Future power transmission: Visions, technologies and challenges. Renewable and Sustainable Energy Reviews, 94, 285-301.
  • Ardelean, I., Oltean, M., Florea, G., Mateescu, E., Mărginean, D., Kilyeni, Ş., Bărbulescu, C., 2011. Case study on increasing the transport capacity of 220 kV DC OHL Iernut-Baia Mare by reconductoring using LM technologies. In 2011 IEEE PES 12th International Conference on Transmission and Distribution Construction, Operation and Live-Line Maintenance (ESMO), 1-7.
  • Bağrıyanık, F.G., 2000. Enerji iletim sistemlerinde 3-faz-6-faz dönüşümlerinin iletim kapasitelerine etkilerinin incelenmesi. Doktora Tezi, İstanbul Teknik Üniversitesi, Türkiye.
  • Barrios, H., Schrief, A.B., Schnettler, A., 2017. A network reinforcement method based on bottleneck indicators. In 2017 IEEE Manchester PowerTech, 1-5.
  • Barthold, L.O., Douglass, D.E., Woodford, D.A., 2008. Maximizing the capability of existing AC transmission lines. CIGRE, Session 2008, 2008, 1–8.
  • Beryozkina, S., 2019. Evaluation study of potential use of advanced conductors in transmission line projects. Energies, 12(5), 822.
  • British Petroleum[BP]. Statistical Review of World Energy 2021. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf (Erişim Tarihi: 27.01.2022).
  • Capelli, F., Riba, J.R., Gonzalez, D., 2016. Thermal behavior of energy-efficient substation connectors. In 2016 10th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), 104-109.
  • Capelli, F., Riba, J.R., Sanllehí, J., 2017. Finite element analysis to predict temperature rise tests in high-capacity substation connectors. IET Generation, Transmission & Distribution, 11(9), 2283-2291.
  • CTC Global. Engineering Transmission Lines with High Capacity Low Sag ACCC Conductors. https://ctc-media.s3.amazonaws.com/wp-content/uploads/20181218185439/Engineering_Transmission_Lines_with_ACCC_Conductor.pdf (Erişim Tarihi: 27.01.2022)
  • Çetinkaya, H.B., 2014. Yenilenebilir Enerji Kaynaklarının Şebekeye Entegrasyonu. 2. Uluslararası İstanbul Akıllı Şebekeler Kongre ve Fuarı, 2014, 72-75. Dave, K., Mohan, N., Deng, X., Gorur, R., Olsen, R., 2012. Analyzing techniques for increasing power transfer in the electric grid. In 2012 North American Power Symposium (NAPS), 1-6.
  • Dawson, L., Knight, A.M., 2016. Transmission line length, operating condition and rating regime. In 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 1-6.
  • Domínguez, A.H., Escobar, A., Gallego, R.A., 2014. Transmission expansion planning considering conductor proposals with different wire size and technology. In 2014 IEEE PES Transmission & Distribution Conference and Exposition-Latin America (PES T&D-LA), 1-6.
  • Exposito, A.G., Santos, J.R., Romero, P.C., 2007. Planning and operational issues arising from the widespread use of HTLS conductors. IEEE Transactions on Power Systems, 22(4), 1446-1455.
  • Favuzza, S., Ippolito, M.G., Massaro, F., Paterno, G., Puccio, A., Filippone, G., 2015. A new approach to increase the integration of RES in a mediterranean island by using HTLS conductors. In 2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), 272-277.
  • Filippone, G., Ippolito, M.G., Massaro, F., Puccio, A., 2014. On the roadmap to Supergrid in Sicily: LIDAR technology and HTLS conductors for uprating the 150 kV lines. In IEEE PES Innovative Smart Grid Technologies, Europe, 1-5.
  • Ghassemi, M., 2019. High surge impedance loading (HSIL) lines: A review identifying opportunities, challenges, and future research needs. IEEE Transactions on Power Delivery, 34(5), 1909-1924.
  • Gorur, R., Heydt, G.T., Hedman, K., Olsen, R., 2014. Making the economic case for innovative HTLS overhead conductors. PhD Thesis, Washington State University, Tempe, Arizona.
  • Hill, T., Bryant, D., 2013. Experience and benefits of using high temperature low sag (HTLS) overhead conductors. In 24th AMEU Technical Convention, 2013, 1-5. IEEE Power and Energy Society. 1283-2013-IEEE guide for determining the effects of high-temperature operation on conductors, connectors, and accessories. 2013. New York.
  • IEEE Power and Energy Society. IEEE guide to the installation of overhead transmission line conductors. IEEE Std 524-2003 (Revision of IEEE Std 524-1992) 2004, 1–141, 2004.
  • Ippolito, M.G., Massaro, F., Cassaro, C., 2018. HTLS Conductors: A Way to Optimize RES Generation and to Improve the Competitiveness of the Electrical Market—A Case Study in Sicily. Journal of Electrical and Computer Engineering, 2018(4), 1-10.
  • Kamboj, S., Dahiya, R., 2011. Application of GPS for sag measurement of overhead power transmission line. International Journal on Electrical Engineering and Informatics, 3(3), 268-277.
  • Karabay, S., Şen, A. Enerji nakil hatlarının ekonomik ömürlerinin tamamlanması safhasında kullanılabilecek yeni nesil havai hat iletkenleri ve malzemeleri. https://makinecim.com/bilgi_1046_enerji-nakil-hatlarinin-ekonomik-omurlerinin-tamamlanmasi-safhasinda-kullanilabilecek-yeni-nesil-havai-hat-iletkenleri-ve-malzemeleri (Erişim Tarihi: 27.01.2022)
  • Karabay, S., Yılmaz, M., Zeren, M., 2003. AA-6101 alaşımının yüksek gerilim çıplak havai hatlarında AAAC iletkeni olarak kullanımı. Metalurji Dergisi, 132, 56-32.
  • Karimi, S., Musilek, P., Knight, A.M., 2018. Dynamic thermal rating of transmission lines: A review. Renewable and Sustainable Energy Reviews, 91, 600-612.
  • Kavanagh, T., Armstrong, O., 2010. An evaluation of High Temperature Low Sag conductors for uprating the 220kV transmission network in Ireland. In 45th International Universities Power Engineering Conference UPEC2010, 1-5.
  • Kenge, A.V., Dusane, S.V., Sarkar, J., 2016. Statistical analysis & comparison of HTLS conductor with conventional ACSR conductor. In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) 2955-2959.
  • Kıstı, E., 2016. Kompozit özlü alüminyum iletkenlerin (ACCC) üretilmesi ve iletkenliğinin yükseltilmesi için yapılan çalışmalar. Yüksek Lisans Tezi, İskenderun Teknik Üniversitesi, Türkiye.
  • Kishore, T.S., Singal, S.K., 2014. Optimal economic planning of power transmission lines: A review. Renewable and Sustainable Energy Reviews, 39, 949-974.
  • Kopsidas, K., 2009. Modelling thermal rating of arbitrary overhead line systems. PhD Thesis, The University of Manchester, United Kingdom.
  • Kumar, M., Rahangdale, M.R., 2018. Comparative analysis of ACSR and HTLS conductor. International Journal on Future Revolution in Computer Science & Communication Engineering, 4(5), 29-35.
  • Kwon, J., Hedman, K,W., 2015. Transmission expansion planning model considering conductor thermal dynamics and high temperature low sag conductors. IET Generation, Transmission & Distribution, 9(15), 2311-2318.
  • Lauria, D., Quaia, S., 2017. An investigation on line loadability increase with high temperature conductors. In 2017 6th International Conference on Clean Electrical Power (ICCEP), 645-649.
  • Lumbreras, S., Ramos, A., 2016. The new challenges to transmission expansion planning. Survey of recent practice and literature review. Electric Power Systems Research, 134, 19-29.
  • Mateescu, E., Marginean, D., Florea, G., Gal, S.I.A., Matea, C., 2011. Reconductoring Using HTLS Conductors. Case study for a 220 kV double circuit transmission LINE in Romania. In 2011 IEEE PES 12th International Conference on Transmission and Distribution Construction, Operation and Live-Line Maintenance (ESMO), 1-7.
  • Milli Eğitim Bakanlığı[MEB]. Havai Enerji Hatları. https://megep.meb.gov.tr/mte_program_modul/moduller_pdf/Havai%20Enerji%20Hatları.pdf (Erişim Tarihi: 27.01.2022)
  • Misaghi, F., Barforoushi, T., 2017. Evaluation of regulatory impacts on investments of distributed generation and upstream network under uncertainty: a new stochastic bi-level model. CIRED-Open Access Proceedings Journal, 2017(1), 2744-2748.
  • Mohtar, S.N., Jamal, N., Sulaiman, M., 2004. Analysis of all aluminum conductor (AAC) and all aluminum alloy conductor (AAAC). In 2004 IEEE Region 10 Conference TENCON 2004. 100, 409-412.
  • Moreira, L, Lopes, A., 2017. Use of high-temperature conductors in existing lines: economic and environmental benefits. CIRED-Open Access Proceedings Journal, 2017(1), 481-486.
  • Nasuruddin, N.B.A., Ariffin A.B., Ryuta, O., 2018. High temperature low sag (HTLS) overhead transmission line conductor. 22nd Conf Electr Power Sup Ind CEPSI, 1–8. Nogales, S.C., Miñana, J.A.L., Alonso, A., Comech, M.P., García-Gracia, M., Martín, E., 2009. HTLS and HVDC solutions for overhead lines uprating. In Proc. of the 11th Spanish Portuguese Conference on Electrical Engineering, 2009, 1-5.
  • Nuchprayoon, S., Chaichana, A., 2017. Cost evaluation of current uprating of overhead transmission lines using ACSR and HTLS conductors. In 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), 1-5.
  • Nuchprayoon, S., Chaichana, A., 2018. Performance comparison of using ACSR and HTLS conductors for current uprating of 230-kV overhead transmission lines. In 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), 1-5.
  • Özal, T. Elektrifikasyon Plânı ve Türkiye’de Elektrik Enerjisinin İstikbali Hakkında Düşünceler. https://www.emo.org.tr/ekler/403e002e8df6f9c_ek.pdf?dergi=410 (Erişim Tarihi: 27.01.2022).
  • Pierre, B.J., Heydt, G.T., 2012. Increased ratings of overhead transmission circuits using HTLS and compact designs. In 2012 North American Power Symposium (NAPS), 1-6.
  • Pirovano, G., Mazzarella, F., Posati, A., Piccinin, A., Scarietto, S., 2014. Creep behaviour of high temperature low sag conductors. Cigré Sess, 2014, 1–14.
  • Rahman, S.A., Kopsidas, K., 2018. Impact of simplified convection model in overhead lines thermal rating calculation methods. In 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), 1-9.
  • Rahman, S.S., Azeem, A., Ahammed, F., 2017. Selection of an appropriate waste-to-energy conversion technology for Dhaka City, Bangladesh. International Journal of Sustainable Engineering, 10(2), 99-104.
  • Riba, J.R., Bogarra, S., Gómez-Pau, Á., Moreno-Eguilaz, M., 2020. Uprating of transmission lines by means of HTLS conductors for a sustainable growth: Challenges, opportunities, and research needs. Renewable and Sustainable Energy Reviews, 134, 1103-1134.
  • Saudeger, K., 2017. Enerji iletim hatlarında kullanılan direklerdeki gelişmeler. Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Türkiye.
  • Shivashankar, G.S., 2017. Overview of different overhead transmission line conductors. Materials Today: Proceedings, 4(10), 11318-11324.
  • Silva, A.A.P., Bezerra, J.M.B., 2012. Applicability and limitations of ampacity models for HTLS conductors. Electric Power Systems Research, 93, 61-66.
  • Thrash, F.R., 2001. ACSS/TW-An improved high temperature conductor for upgrading existing lines or new construction. In 2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No. 01CH37262), 1, 182-185.
  • Tokombayev, A., Heydt, G.T., 2013. High temperature low sag (HTLS) technologies as upgrades for overhead transmission systems. In 2013 North American Power Symposium (NAPS), 1-6.
  • Tokombayev, A., Heydt, G.T., 2015 High temperature low sag upgrades and payback for the economic operation improvement of power transmission systems. Electric Power Components and Systems, 43(3), 345-355.
  • Türkiye Cumhuriyeti Ticaret Bakanlığı. Bulgaristan Enerji Sektörü. https://ticaret.gov.tr/data/5b8a43355c7495406a2276c0/2017_Bulgaristan_Enerji.pdf (Erişim Tarihi: 27.01.2022)
  • Türkiye Elektrik İletim Anonim Şirketi[TEİAŞ]. 2021-2030 Talep Tahmin Raporu. https://webapi.teias.gov.tr/file/538d66ee-4d9e-4711-a29c-1e31dae54e8f?download (Erişim Tarihi: 27.01.2022).
  • Waters, D.H., Hoffman, J., Hakansson, E., Kumosa, M., 2017. Low-velocity impact to transmission line conductors. International journal of impact engineering, 106, 64-72.
  • World Energy Outlook[WEO]. 2021 yılı raporu. https://iea.blob.core.windows.net/assets/4ed140c1-c3f3-4fd9-acae-789a4e14a23c/WorldEnergyOutlook2021.pdf (Erişim Tarihi: 27.01.2022).
  • Yasaranga, H.B.D., Wijayapala, W.D.A.S., Hemapala, K.T.M.U., 2017. Techno economic analysis of the use of high temperature low sag (HTLS) conductors in the Sri Lanka’s transmission system. Engineer: Journal of the Institution of Engineers, Sri Lanka, 50(1).
  • Zamora, I., Mazon, A.J., Eguia, P., Criado, R., Alonso, C., Iglesias, J., Saenz, J.R., 2001. High-temperature conductors: a solution in the uprating of overhead transmission lines. In 2001 IEEE Porto Power Tech Proceedings (Cat. No. 01EX502), 4, 6.
  • Zheng, Y., Niu, S., Shang, Y., Shao, Z., Jian, L., 2019. Integrating plug-in electric vehicles into power grids: A comprehensive review on power interaction mode, scheduling methodology and mathematical foundation. Renewable and Sustainable Energy Reviews, 112, 424-439.

TECHNOECONOMIC ANALYSIS OF HTLS CONDUCTORS

Yıl 2022, Cilt: 10 Sayı: 3, 1128 - 1140, 30.09.2022
https://doi.org/10.21923/jesd.1073763

Öz

High voltage conductors are one of the most important elements to be considered in energy demand. The demand of electrical energy increases day by day, unfortunately it creates some problems (power loss, insufficient line capacities, sag etc.) on power systems. However, there is some methods to solve these problems. One of these methods is to minimize the amount of sag in the conductors by replacing the conventional conductors used with High Temperature Low Sag (HTLS) conductors. In addition, it aims to obtain more current carrying capacity than the current situation by providing more current transmission over HTLS conductors that can operate at higher temperatures. But, the installation of new line costs should be considered before decide to do it. In this study, conventional conductors and HTLS conductors are examined in terms of technical and economic terms. In terms of the results obtained, HTLS conductors have been found to be more advantageous in terms of technical and cost than conventional conductors.

Kaynakça

  • Akgöl, O., Kıstı, E.A., Karaaslan, M., Ünal, E., 2018. Kompozit Özlü Alüminyum İletkenlerin (ACCC) üretilmesi ve iletkenliğinin yükseltilmesi için yapılan çalışmalar. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 9(2), 657-669.
  • Albizu, I., Fernandez, E., Mazon, A.J., Bedialauneta, M., Sagastabeitia, K., 2011. Overhead conductor monitoring system for the evaluation of the low sag behavior. In 2011 IEEE Trondheim PowerTech, 1-6.
  • Albizu, I., Mazón, A.J., Valverde, V., Buigues, G., 2010. Aspects to take into account in the application of mechanical calculation to high-temperature low-sag conductors. IET generation, transmission & distribution, 4(5), 631-640.
  • Albizu, I., Mazon, A.J., Zamora, I., 2005. Methods for increasing the rating of overhead lines. In 2005 IEEE Russia Power Tech, 1-6.
  • Arcia-Garibaldi, G., Cruz-Romero, P., Gómez-Expósito, A., 2018. Future power transmission: Visions, technologies and challenges. Renewable and Sustainable Energy Reviews, 94, 285-301.
  • Ardelean, I., Oltean, M., Florea, G., Mateescu, E., Mărginean, D., Kilyeni, Ş., Bărbulescu, C., 2011. Case study on increasing the transport capacity of 220 kV DC OHL Iernut-Baia Mare by reconductoring using LM technologies. In 2011 IEEE PES 12th International Conference on Transmission and Distribution Construction, Operation and Live-Line Maintenance (ESMO), 1-7.
  • Bağrıyanık, F.G., 2000. Enerji iletim sistemlerinde 3-faz-6-faz dönüşümlerinin iletim kapasitelerine etkilerinin incelenmesi. Doktora Tezi, İstanbul Teknik Üniversitesi, Türkiye.
  • Barrios, H., Schrief, A.B., Schnettler, A., 2017. A network reinforcement method based on bottleneck indicators. In 2017 IEEE Manchester PowerTech, 1-5.
  • Barthold, L.O., Douglass, D.E., Woodford, D.A., 2008. Maximizing the capability of existing AC transmission lines. CIGRE, Session 2008, 2008, 1–8.
  • Beryozkina, S., 2019. Evaluation study of potential use of advanced conductors in transmission line projects. Energies, 12(5), 822.
  • British Petroleum[BP]. Statistical Review of World Energy 2021. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf (Erişim Tarihi: 27.01.2022).
  • Capelli, F., Riba, J.R., Gonzalez, D., 2016. Thermal behavior of energy-efficient substation connectors. In 2016 10th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), 104-109.
  • Capelli, F., Riba, J.R., Sanllehí, J., 2017. Finite element analysis to predict temperature rise tests in high-capacity substation connectors. IET Generation, Transmission & Distribution, 11(9), 2283-2291.
  • CTC Global. Engineering Transmission Lines with High Capacity Low Sag ACCC Conductors. https://ctc-media.s3.amazonaws.com/wp-content/uploads/20181218185439/Engineering_Transmission_Lines_with_ACCC_Conductor.pdf (Erişim Tarihi: 27.01.2022)
  • Çetinkaya, H.B., 2014. Yenilenebilir Enerji Kaynaklarının Şebekeye Entegrasyonu. 2. Uluslararası İstanbul Akıllı Şebekeler Kongre ve Fuarı, 2014, 72-75. Dave, K., Mohan, N., Deng, X., Gorur, R., Olsen, R., 2012. Analyzing techniques for increasing power transfer in the electric grid. In 2012 North American Power Symposium (NAPS), 1-6.
  • Dawson, L., Knight, A.M., 2016. Transmission line length, operating condition and rating regime. In 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 1-6.
  • Domínguez, A.H., Escobar, A., Gallego, R.A., 2014. Transmission expansion planning considering conductor proposals with different wire size and technology. In 2014 IEEE PES Transmission & Distribution Conference and Exposition-Latin America (PES T&D-LA), 1-6.
  • Exposito, A.G., Santos, J.R., Romero, P.C., 2007. Planning and operational issues arising from the widespread use of HTLS conductors. IEEE Transactions on Power Systems, 22(4), 1446-1455.
  • Favuzza, S., Ippolito, M.G., Massaro, F., Paterno, G., Puccio, A., Filippone, G., 2015. A new approach to increase the integration of RES in a mediterranean island by using HTLS conductors. In 2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), 272-277.
  • Filippone, G., Ippolito, M.G., Massaro, F., Puccio, A., 2014. On the roadmap to Supergrid in Sicily: LIDAR technology and HTLS conductors for uprating the 150 kV lines. In IEEE PES Innovative Smart Grid Technologies, Europe, 1-5.
  • Ghassemi, M., 2019. High surge impedance loading (HSIL) lines: A review identifying opportunities, challenges, and future research needs. IEEE Transactions on Power Delivery, 34(5), 1909-1924.
  • Gorur, R., Heydt, G.T., Hedman, K., Olsen, R., 2014. Making the economic case for innovative HTLS overhead conductors. PhD Thesis, Washington State University, Tempe, Arizona.
  • Hill, T., Bryant, D., 2013. Experience and benefits of using high temperature low sag (HTLS) overhead conductors. In 24th AMEU Technical Convention, 2013, 1-5. IEEE Power and Energy Society. 1283-2013-IEEE guide for determining the effects of high-temperature operation on conductors, connectors, and accessories. 2013. New York.
  • IEEE Power and Energy Society. IEEE guide to the installation of overhead transmission line conductors. IEEE Std 524-2003 (Revision of IEEE Std 524-1992) 2004, 1–141, 2004.
  • Ippolito, M.G., Massaro, F., Cassaro, C., 2018. HTLS Conductors: A Way to Optimize RES Generation and to Improve the Competitiveness of the Electrical Market—A Case Study in Sicily. Journal of Electrical and Computer Engineering, 2018(4), 1-10.
  • Kamboj, S., Dahiya, R., 2011. Application of GPS for sag measurement of overhead power transmission line. International Journal on Electrical Engineering and Informatics, 3(3), 268-277.
  • Karabay, S., Şen, A. Enerji nakil hatlarının ekonomik ömürlerinin tamamlanması safhasında kullanılabilecek yeni nesil havai hat iletkenleri ve malzemeleri. https://makinecim.com/bilgi_1046_enerji-nakil-hatlarinin-ekonomik-omurlerinin-tamamlanmasi-safhasinda-kullanilabilecek-yeni-nesil-havai-hat-iletkenleri-ve-malzemeleri (Erişim Tarihi: 27.01.2022)
  • Karabay, S., Yılmaz, M., Zeren, M., 2003. AA-6101 alaşımının yüksek gerilim çıplak havai hatlarında AAAC iletkeni olarak kullanımı. Metalurji Dergisi, 132, 56-32.
  • Karimi, S., Musilek, P., Knight, A.M., 2018. Dynamic thermal rating of transmission lines: A review. Renewable and Sustainable Energy Reviews, 91, 600-612.
  • Kavanagh, T., Armstrong, O., 2010. An evaluation of High Temperature Low Sag conductors for uprating the 220kV transmission network in Ireland. In 45th International Universities Power Engineering Conference UPEC2010, 1-5.
  • Kenge, A.V., Dusane, S.V., Sarkar, J., 2016. Statistical analysis & comparison of HTLS conductor with conventional ACSR conductor. In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) 2955-2959.
  • Kıstı, E., 2016. Kompozit özlü alüminyum iletkenlerin (ACCC) üretilmesi ve iletkenliğinin yükseltilmesi için yapılan çalışmalar. Yüksek Lisans Tezi, İskenderun Teknik Üniversitesi, Türkiye.
  • Kishore, T.S., Singal, S.K., 2014. Optimal economic planning of power transmission lines: A review. Renewable and Sustainable Energy Reviews, 39, 949-974.
  • Kopsidas, K., 2009. Modelling thermal rating of arbitrary overhead line systems. PhD Thesis, The University of Manchester, United Kingdom.
  • Kumar, M., Rahangdale, M.R., 2018. Comparative analysis of ACSR and HTLS conductor. International Journal on Future Revolution in Computer Science & Communication Engineering, 4(5), 29-35.
  • Kwon, J., Hedman, K,W., 2015. Transmission expansion planning model considering conductor thermal dynamics and high temperature low sag conductors. IET Generation, Transmission & Distribution, 9(15), 2311-2318.
  • Lauria, D., Quaia, S., 2017. An investigation on line loadability increase with high temperature conductors. In 2017 6th International Conference on Clean Electrical Power (ICCEP), 645-649.
  • Lumbreras, S., Ramos, A., 2016. The new challenges to transmission expansion planning. Survey of recent practice and literature review. Electric Power Systems Research, 134, 19-29.
  • Mateescu, E., Marginean, D., Florea, G., Gal, S.I.A., Matea, C., 2011. Reconductoring Using HTLS Conductors. Case study for a 220 kV double circuit transmission LINE in Romania. In 2011 IEEE PES 12th International Conference on Transmission and Distribution Construction, Operation and Live-Line Maintenance (ESMO), 1-7.
  • Milli Eğitim Bakanlığı[MEB]. Havai Enerji Hatları. https://megep.meb.gov.tr/mte_program_modul/moduller_pdf/Havai%20Enerji%20Hatları.pdf (Erişim Tarihi: 27.01.2022)
  • Misaghi, F., Barforoushi, T., 2017. Evaluation of regulatory impacts on investments of distributed generation and upstream network under uncertainty: a new stochastic bi-level model. CIRED-Open Access Proceedings Journal, 2017(1), 2744-2748.
  • Mohtar, S.N., Jamal, N., Sulaiman, M., 2004. Analysis of all aluminum conductor (AAC) and all aluminum alloy conductor (AAAC). In 2004 IEEE Region 10 Conference TENCON 2004. 100, 409-412.
  • Moreira, L, Lopes, A., 2017. Use of high-temperature conductors in existing lines: economic and environmental benefits. CIRED-Open Access Proceedings Journal, 2017(1), 481-486.
  • Nasuruddin, N.B.A., Ariffin A.B., Ryuta, O., 2018. High temperature low sag (HTLS) overhead transmission line conductor. 22nd Conf Electr Power Sup Ind CEPSI, 1–8. Nogales, S.C., Miñana, J.A.L., Alonso, A., Comech, M.P., García-Gracia, M., Martín, E., 2009. HTLS and HVDC solutions for overhead lines uprating. In Proc. of the 11th Spanish Portuguese Conference on Electrical Engineering, 2009, 1-5.
  • Nuchprayoon, S., Chaichana, A., 2017. Cost evaluation of current uprating of overhead transmission lines using ACSR and HTLS conductors. In 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), 1-5.
  • Nuchprayoon, S., Chaichana, A., 2018. Performance comparison of using ACSR and HTLS conductors for current uprating of 230-kV overhead transmission lines. In 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), 1-5.
  • Özal, T. Elektrifikasyon Plânı ve Türkiye’de Elektrik Enerjisinin İstikbali Hakkında Düşünceler. https://www.emo.org.tr/ekler/403e002e8df6f9c_ek.pdf?dergi=410 (Erişim Tarihi: 27.01.2022).
  • Pierre, B.J., Heydt, G.T., 2012. Increased ratings of overhead transmission circuits using HTLS and compact designs. In 2012 North American Power Symposium (NAPS), 1-6.
  • Pirovano, G., Mazzarella, F., Posati, A., Piccinin, A., Scarietto, S., 2014. Creep behaviour of high temperature low sag conductors. Cigré Sess, 2014, 1–14.
  • Rahman, S.A., Kopsidas, K., 2018. Impact of simplified convection model in overhead lines thermal rating calculation methods. In 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), 1-9.
  • Rahman, S.S., Azeem, A., Ahammed, F., 2017. Selection of an appropriate waste-to-energy conversion technology for Dhaka City, Bangladesh. International Journal of Sustainable Engineering, 10(2), 99-104.
  • Riba, J.R., Bogarra, S., Gómez-Pau, Á., Moreno-Eguilaz, M., 2020. Uprating of transmission lines by means of HTLS conductors for a sustainable growth: Challenges, opportunities, and research needs. Renewable and Sustainable Energy Reviews, 134, 1103-1134.
  • Saudeger, K., 2017. Enerji iletim hatlarında kullanılan direklerdeki gelişmeler. Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Türkiye.
  • Shivashankar, G.S., 2017. Overview of different overhead transmission line conductors. Materials Today: Proceedings, 4(10), 11318-11324.
  • Silva, A.A.P., Bezerra, J.M.B., 2012. Applicability and limitations of ampacity models for HTLS conductors. Electric Power Systems Research, 93, 61-66.
  • Thrash, F.R., 2001. ACSS/TW-An improved high temperature conductor for upgrading existing lines or new construction. In 2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No. 01CH37262), 1, 182-185.
  • Tokombayev, A., Heydt, G.T., 2013. High temperature low sag (HTLS) technologies as upgrades for overhead transmission systems. In 2013 North American Power Symposium (NAPS), 1-6.
  • Tokombayev, A., Heydt, G.T., 2015 High temperature low sag upgrades and payback for the economic operation improvement of power transmission systems. Electric Power Components and Systems, 43(3), 345-355.
  • Türkiye Cumhuriyeti Ticaret Bakanlığı. Bulgaristan Enerji Sektörü. https://ticaret.gov.tr/data/5b8a43355c7495406a2276c0/2017_Bulgaristan_Enerji.pdf (Erişim Tarihi: 27.01.2022)
  • Türkiye Elektrik İletim Anonim Şirketi[TEİAŞ]. 2021-2030 Talep Tahmin Raporu. https://webapi.teias.gov.tr/file/538d66ee-4d9e-4711-a29c-1e31dae54e8f?download (Erişim Tarihi: 27.01.2022).
  • Waters, D.H., Hoffman, J., Hakansson, E., Kumosa, M., 2017. Low-velocity impact to transmission line conductors. International journal of impact engineering, 106, 64-72.
  • World Energy Outlook[WEO]. 2021 yılı raporu. https://iea.blob.core.windows.net/assets/4ed140c1-c3f3-4fd9-acae-789a4e14a23c/WorldEnergyOutlook2021.pdf (Erişim Tarihi: 27.01.2022).
  • Yasaranga, H.B.D., Wijayapala, W.D.A.S., Hemapala, K.T.M.U., 2017. Techno economic analysis of the use of high temperature low sag (HTLS) conductors in the Sri Lanka’s transmission system. Engineer: Journal of the Institution of Engineers, Sri Lanka, 50(1).
  • Zamora, I., Mazon, A.J., Eguia, P., Criado, R., Alonso, C., Iglesias, J., Saenz, J.R., 2001. High-temperature conductors: a solution in the uprating of overhead transmission lines. In 2001 IEEE Porto Power Tech Proceedings (Cat. No. 01EX502), 4, 6.
  • Zheng, Y., Niu, S., Shang, Y., Shao, Z., Jian, L., 2019. Integrating plug-in electric vehicles into power grids: A comprehensive review on power interaction mode, scheduling methodology and mathematical foundation. Renewable and Sustainable Energy Reviews, 112, 424-439.
Toplam 65 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Mühendisliği
Bölüm Derleme Makaleler \ Review Articles
Yazarlar

Yiğit Akyol 0000-0001-6096-5216

Altuğ Bozkurt 0000-0001-6458-1260

Yayımlanma Tarihi 30 Eylül 2022
Gönderilme Tarihi 15 Şubat 2022
Kabul Tarihi 3 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 3

Kaynak Göster

APA Akyol, Y., & Bozkurt, A. (2022). HTLS İLETKENLERİN TEKNOEKONOMİK ANALİZİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 10(3), 1128-1140. https://doi.org/10.21923/jesd.1073763