Araştırma Makalesi
BibTex RIS Kaynak Göster

DOĞAL ALKALİ MALZEMELERİN ÇİMENTOLU MACUN DOLGUNUN DAYANIM-DURAYLILIK VE MİKROYAPI PERFORMANSINA ETKİSİ

Yıl 2022, Cilt: 10 Sayı: 4, 1474 - 1483, 30.12.2022
https://doi.org/10.21923/jesd.1086405

Öz

Bu çalışmada, çimentolu macun dolgu (ÇMD) içerisinde doğal alkali malzemelerin (DAL-M) sülfürlü maden atığına (S-MA) ikame (%5-15) olarak kullanılabilirliği araştırılmıştır. Kontrol numuneleri %8,5 bağlayıcı oranında hazırlanırken, DAL-M ikameli numuneler %7,5-8,5 bağlayıcı oranında S-MA yerine kalsitik ve dolomitik kireçtaşı kullanılarak üretilmiştir. Numuneler üzerinde 7-360 gün aralığında basınç dayanımı ve 28-180 günde mikroyapı testleri uygulanmıştır. Dayanım-duraylılık bulguları, DAL-M ikamesinin ÇMD’nin dayanımını arttırdığını ve uzun dönemde meydana gelen dayanım kayıplarını azalttığını göstermiştir. Ayrıca, 28-360 gün boyunca istenen asgari basınç dayanımı (≥1,0 MPa) %5 DAL-M ikameli ÇMD numuneleri (%7,5) haricinde sağlanmıştır. Mikroyapı sonuçları değerlendirildiğinde, kür süresinin artmasıyla tüm numunelerin toplam poroziteleri (ntop) azalmış ve Kontrol numuneleri ile karşılaştırıldığında, S-MA yerine yapılan %15 DAL-M ikamesi numunelerin ntop değerlerini düşürmüştür. ÇMD’nin dayanım-duraylılık ve mikroyapı performansı ve DAL-M’lerin oluşturduğu olası çevresel problemler göz önüne alındığında, sonuçlar, bu malzemelerin ÇMD karışımlarında kullanımının faydalı olabileceğini ortaya koymuştur.

Destekleyen Kurum

Karadeniz Teknik Üniversitesi Bilimsel Araştırma Projeleri Birimi

Proje Numarası

FDK 2016-5500

Kaynakça

  • Algin, H.M., Turgut, P., 2008. Cotton and Limestone Powder Wastes as Brick Material. Construction and Building Materials, 22(6), 1074-1080. https://doi.org/10.1016/j.conbuildmat.2007.03.006
  • ASTM C39/C39M-16b, 2016. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, Annual Book of ASTM Standards. American Society of Testing Material.
  • ASTM D 4404-18, 2018. Standard Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry. Annual Book of ASTM Standards, American Society of Testing Material.
  • Binici, H., Kaplan, H., Yilmaz, S., 2007. Influence of Marble and Limestone Dusts as Additives on Some Mechanical Properties of Concrete. Scientific Research and Essays, 2(9), 372-379. https://doi.org/10.5897/SRE.9000594
  • Cihangir, F., Akyol, Y., 2018. Mechanical, Hydrological and Microstructural Assessment of the durability of Cemented Paste Backfill Containing Alkali-Activated Slag. International Journal of Mining, Reclamation and Environment, 32(2), 123-143. https://doi.org/10.1080/17480930.2016.1242183
  • Elbahi, B., Boukli Hacene, S.M.A., 2016. Influence of Limestone Fillers and Natural Pozzolan on Engineering Properties of Concrete. Journal of Adhesion Science and Technology, 30(16), 1795-1807. https://doi.org/10.1080/01694243.2016.1161970
  • Ercikdi, B., Baki, H., İzki, M., 2013. Effect of Desliming of Sulphide-rich Mill Tailings on the long-term Strength of Cemented Paste Backfill. Journal of Environmental Management, 115, 5-13. https://doi.org/10.1016/j.jenvman.2012.11.014
  • Ercikdi, B., Külekci, G., Yılmaz, T., 2015. Utilization of Granulated Marble Wastes and Waste Bricks as Mineral Admixture in Cemented Paste Backfill of Sulphide-rich Tailings. Construction and Building Materials. 93, 573-583. https://doi.org/10.1016/j.conbuildmat.2015.06.042
  • Ghirian, A., Fall, M., 2014. Coupled Thermo-Hydro-Mechanical–Chemical Behaviour of Cemented Paste Backfill in Column Experiments: Part II: Mechanical, Chemical and Microstructural Processes and Characteristics. Engineering Geology, 170, 11-23. https://doi.org/10.1016/j.enggeo.2013.12.004
  • Liu, Y., Qian, Z.D., Zheng, D., Huang, Q.B., 2018. Evaluation of Epoxy Asphalt-based concrete substructure for high-speed Railway Ballastless Track. Construction and Building Materials, 162, 229-238. https://doi.org/10.1016/j.conbuildmat.2017.12.028
  • Mangane, M.B.C., Argane, R., Trauchessec, R., Lecomte, A., Benzaazoua, M., 2018. Influence of Superplasticizers on Mechanical Properties and Workability of Cemented Paste Backfill, Minerals Engineering, 116, 3-14. https://doi.org/10.1016/j.mineng.2017.11.006
  • Mikhailova, O., Yakovlev, G., Maeva, I., Senkov, S., 2013. Effect of Dolomite Limestone Powder on the Compressive Strength of Concrete. Procedia Engineering, 57, 775-780. https://doi.org/10.1016/j.proeng.2013.04.098
  • Moon, G.D., Oh, S., Jung, S.H., Choi, Y.C., 2017. Effects of the Fineness of Limestone Powder and Cement on the Hydration and Strength Development of PLC Concrete. Construction and Building Materials, 135, 129-136. https://doi.org/10.1016/j.conbuildmat.2016.12.189
  • Parlakyıldız, M., 2008. Hammadde olarak Kireçtaşı ve Üretilen Kirecin Standartlara Uygunluğunun Araştırılması, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Adana, 91s.
  • Ramezanianpour, A.A., Ghiasvand, E., Nickseresht, I., Mahdikhani, M., Moodi, F., 2009. Influence of various amounts of Limestone Powder on Performance of Portland Limestone Cement Concretes. Cement and Concrete Composites, 31(10), 715-720. https://doi.org/10.1016/j.cemconcomp.2009.08.003
  • Salas, D.A., Ramirez, A.D., Rodríguez, C.R., Petroche, D.M., Boero, A.J., Duque-Rivera, J., 2016. Environmental Impacts, Life Cycle Assessment and Potential Improvement Measures for Cement Production: A Literature Review, Journal of Cleaner Production, 113, 114-122. https://doi.org/10.1016/j.jclepro.2015.11.078
  • Semerci, F., 2008. Mardin Kireçtaşının Yapı Taşı olarak Araştırılması, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İstanbul, 124s.
  • Shaaban, K.H.S., Saddeek, Y.B., Aly, K.A., Dahshan, A., Ali, A.M., 2019. Fabrication and Characterization of Glass and Glass-Ceramic from Cement Dust and Limestone Dust. Silicon, 11(2), 807-815. https://doi.org/10.1007/s12633-018-9964-3
  • Tariq, A., Nehdi, M., 2007. Developing Durable Paste Backfill from Sulphidic Tailings, Waste Management Research, 160(4), 155–166. https://doi.org/10.1680/warm.2007.160.4.155
  • Turk, K., Demirhan, S., 2017. Effect of Limestone Powder on the Rheological, Mechanical and Durability Properties of ECC. European Journal of Environmental and Civil Engineering, 21(9), 1151-1170. https://doi.org/10.1080/19648189.2016.1150902
  • Vuk, T., Tinta, V., Gabrovšek, R., Kaučič, V., 2001. The Effects of Limestone Addition, Clinker Type and Fineness On Properties of Portland Cement. Cement and Concrete Research, 31(1), 135-139. https://doi.org/10.1016/S0008-8846(00)00427-0
  • Wang, Y.H., Xu, Y.D., He, Z.H., 2015. Effect of Limestone Powder on Creep of High-Strength Concrete. Materials Research Innovations, 19(sup9), S9-220. https://doi.org/10.1179/1432891715Z.0000000001969
  • Yılmaz, T., Ercikdi, B., 2016. Predicting the Uniaxial Compressive Strength of Cemented Paste Backfill from Ultrasonic Pulse Velocity Test. Nondestructive Testing and Evaluation, 31(3), 247-266. https://doi.org/10.1080/10589759.2015.1111891
  • Yılmaz, T., Ercikdi, B., Deveci, H., 2018. Utilisation of Construction and Demolition Waste as Cemented Paste Backfill Material for Underground Mine Openings. Journal of Environmental Management, 222, 250-259. https://doi.org/10.1016/j.jenvman.2018.05.075
  • Yılmaz, T., 2019. Asit Nötralize Edici Malzemeler Kullanılarak Sülfürlü Atıklardan Duraylı Macun Dolgu Üretiminin Araştırılması, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Trabzon, 153s.
  • Yılmaz, T., Ercikdi, B., Cihangir, F., 2020. Evaluation of the Neutralization Performances of the Industrial Waste Products (IWPs) in Sulphide-rich Environment of Cemented Paste Backfill. Journal of Environmental Management, 258, 110037. https://doi.org/10.1016/j.jenvman.2019.110037
  • Yilmaz, E., Belem, T., Benzaazoua, M., 2014. Effects of Curing and Stress Conditions on Hydromechanical, Geotechnical and Geochemical Properties of Cemented Paste Backfill. Engineering Geology, 168, 23-37. https://doi.org/10.1016/j.enggeo.2013.10.024
  • Yin, S., Shao, Y., Wu, A., Wang, Y., Chen, X., 2018. Expansion and Strength Properties of Cemented Backfill Using Sulphidic Mill Tailings. Construction and Building Materials, 165, 138-148. https://doi.org/10.1016/j.conbuildmat.2018.01.005
  • Zheng, J., Zhu, Y., Zhao, Z., 2016. Utilization of Limestone Powder and Water-Reducing Admixture in Cemented Paste Backfill of Coarse Copper Mine Tailings. Construction and Building Materials, 124, 31-36. https://doi.org/10.1016/j.conbuildmat.2016.07.055

EFFECT OF NATURAL ALKALINE MATERIALS ON THE STRENGTH-STABILITY AND MICROSTRUCTURE PERFORMANCE OF CEMENTED PASTE BACKFILL

Yıl 2022, Cilt: 10 Sayı: 4, 1474 - 1483, 30.12.2022
https://doi.org/10.21923/jesd.1086405

Öz

In this study, the usability of natural alkaline materials (NAL-M) as partial replacement (5-15wt.%) to sulphide-mine tailings (S-MT) in cemented paste backfill (CPB) was investigated. Control samples were prepared at 8.5wt.% binder dosage, whilst, CPB samples containing NAL-M were produced by utilising the calcitic and dolomitic limestone at 7.5-8.5 wt.% cement dosages. Compressive strength between 7-360 days and microstructure tests at 28-180 days were performed on the samples. The strength-stability findings demonstrated that the replacement of NAL-M increased the strength of CPB, and decreased the strength loses occurred at long-term. The minimum compressive strength (≥1.0 MPa) desired during 28-360 days was provided except CPB samples (7.5 wt.%) containing 5wt.% NAL-M. When the microstructure results were evaluated, the total porosity (ntot) values of all samples were decreased with the increase of curing time, and the replacement of 15wt.% NAL-M to S-MT decreased the ntot of samples compared to Control samples. Considering the strength-stability and microstructural performance of CPB, and the possible environmental problems caused by NAL-M, the results revealed that the utilisation of these materials in CPB mixtures can be beneficial.

Proje Numarası

FDK 2016-5500

Kaynakça

  • Algin, H.M., Turgut, P., 2008. Cotton and Limestone Powder Wastes as Brick Material. Construction and Building Materials, 22(6), 1074-1080. https://doi.org/10.1016/j.conbuildmat.2007.03.006
  • ASTM C39/C39M-16b, 2016. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, Annual Book of ASTM Standards. American Society of Testing Material.
  • ASTM D 4404-18, 2018. Standard Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry. Annual Book of ASTM Standards, American Society of Testing Material.
  • Binici, H., Kaplan, H., Yilmaz, S., 2007. Influence of Marble and Limestone Dusts as Additives on Some Mechanical Properties of Concrete. Scientific Research and Essays, 2(9), 372-379. https://doi.org/10.5897/SRE.9000594
  • Cihangir, F., Akyol, Y., 2018. Mechanical, Hydrological and Microstructural Assessment of the durability of Cemented Paste Backfill Containing Alkali-Activated Slag. International Journal of Mining, Reclamation and Environment, 32(2), 123-143. https://doi.org/10.1080/17480930.2016.1242183
  • Elbahi, B., Boukli Hacene, S.M.A., 2016. Influence of Limestone Fillers and Natural Pozzolan on Engineering Properties of Concrete. Journal of Adhesion Science and Technology, 30(16), 1795-1807. https://doi.org/10.1080/01694243.2016.1161970
  • Ercikdi, B., Baki, H., İzki, M., 2013. Effect of Desliming of Sulphide-rich Mill Tailings on the long-term Strength of Cemented Paste Backfill. Journal of Environmental Management, 115, 5-13. https://doi.org/10.1016/j.jenvman.2012.11.014
  • Ercikdi, B., Külekci, G., Yılmaz, T., 2015. Utilization of Granulated Marble Wastes and Waste Bricks as Mineral Admixture in Cemented Paste Backfill of Sulphide-rich Tailings. Construction and Building Materials. 93, 573-583. https://doi.org/10.1016/j.conbuildmat.2015.06.042
  • Ghirian, A., Fall, M., 2014. Coupled Thermo-Hydro-Mechanical–Chemical Behaviour of Cemented Paste Backfill in Column Experiments: Part II: Mechanical, Chemical and Microstructural Processes and Characteristics. Engineering Geology, 170, 11-23. https://doi.org/10.1016/j.enggeo.2013.12.004
  • Liu, Y., Qian, Z.D., Zheng, D., Huang, Q.B., 2018. Evaluation of Epoxy Asphalt-based concrete substructure for high-speed Railway Ballastless Track. Construction and Building Materials, 162, 229-238. https://doi.org/10.1016/j.conbuildmat.2017.12.028
  • Mangane, M.B.C., Argane, R., Trauchessec, R., Lecomte, A., Benzaazoua, M., 2018. Influence of Superplasticizers on Mechanical Properties and Workability of Cemented Paste Backfill, Minerals Engineering, 116, 3-14. https://doi.org/10.1016/j.mineng.2017.11.006
  • Mikhailova, O., Yakovlev, G., Maeva, I., Senkov, S., 2013. Effect of Dolomite Limestone Powder on the Compressive Strength of Concrete. Procedia Engineering, 57, 775-780. https://doi.org/10.1016/j.proeng.2013.04.098
  • Moon, G.D., Oh, S., Jung, S.H., Choi, Y.C., 2017. Effects of the Fineness of Limestone Powder and Cement on the Hydration and Strength Development of PLC Concrete. Construction and Building Materials, 135, 129-136. https://doi.org/10.1016/j.conbuildmat.2016.12.189
  • Parlakyıldız, M., 2008. Hammadde olarak Kireçtaşı ve Üretilen Kirecin Standartlara Uygunluğunun Araştırılması, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Adana, 91s.
  • Ramezanianpour, A.A., Ghiasvand, E., Nickseresht, I., Mahdikhani, M., Moodi, F., 2009. Influence of various amounts of Limestone Powder on Performance of Portland Limestone Cement Concretes. Cement and Concrete Composites, 31(10), 715-720. https://doi.org/10.1016/j.cemconcomp.2009.08.003
  • Salas, D.A., Ramirez, A.D., Rodríguez, C.R., Petroche, D.M., Boero, A.J., Duque-Rivera, J., 2016. Environmental Impacts, Life Cycle Assessment and Potential Improvement Measures for Cement Production: A Literature Review, Journal of Cleaner Production, 113, 114-122. https://doi.org/10.1016/j.jclepro.2015.11.078
  • Semerci, F., 2008. Mardin Kireçtaşının Yapı Taşı olarak Araştırılması, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İstanbul, 124s.
  • Shaaban, K.H.S., Saddeek, Y.B., Aly, K.A., Dahshan, A., Ali, A.M., 2019. Fabrication and Characterization of Glass and Glass-Ceramic from Cement Dust and Limestone Dust. Silicon, 11(2), 807-815. https://doi.org/10.1007/s12633-018-9964-3
  • Tariq, A., Nehdi, M., 2007. Developing Durable Paste Backfill from Sulphidic Tailings, Waste Management Research, 160(4), 155–166. https://doi.org/10.1680/warm.2007.160.4.155
  • Turk, K., Demirhan, S., 2017. Effect of Limestone Powder on the Rheological, Mechanical and Durability Properties of ECC. European Journal of Environmental and Civil Engineering, 21(9), 1151-1170. https://doi.org/10.1080/19648189.2016.1150902
  • Vuk, T., Tinta, V., Gabrovšek, R., Kaučič, V., 2001. The Effects of Limestone Addition, Clinker Type and Fineness On Properties of Portland Cement. Cement and Concrete Research, 31(1), 135-139. https://doi.org/10.1016/S0008-8846(00)00427-0
  • Wang, Y.H., Xu, Y.D., He, Z.H., 2015. Effect of Limestone Powder on Creep of High-Strength Concrete. Materials Research Innovations, 19(sup9), S9-220. https://doi.org/10.1179/1432891715Z.0000000001969
  • Yılmaz, T., Ercikdi, B., 2016. Predicting the Uniaxial Compressive Strength of Cemented Paste Backfill from Ultrasonic Pulse Velocity Test. Nondestructive Testing and Evaluation, 31(3), 247-266. https://doi.org/10.1080/10589759.2015.1111891
  • Yılmaz, T., Ercikdi, B., Deveci, H., 2018. Utilisation of Construction and Demolition Waste as Cemented Paste Backfill Material for Underground Mine Openings. Journal of Environmental Management, 222, 250-259. https://doi.org/10.1016/j.jenvman.2018.05.075
  • Yılmaz, T., 2019. Asit Nötralize Edici Malzemeler Kullanılarak Sülfürlü Atıklardan Duraylı Macun Dolgu Üretiminin Araştırılması, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Trabzon, 153s.
  • Yılmaz, T., Ercikdi, B., Cihangir, F., 2020. Evaluation of the Neutralization Performances of the Industrial Waste Products (IWPs) in Sulphide-rich Environment of Cemented Paste Backfill. Journal of Environmental Management, 258, 110037. https://doi.org/10.1016/j.jenvman.2019.110037
  • Yilmaz, E., Belem, T., Benzaazoua, M., 2014. Effects of Curing and Stress Conditions on Hydromechanical, Geotechnical and Geochemical Properties of Cemented Paste Backfill. Engineering Geology, 168, 23-37. https://doi.org/10.1016/j.enggeo.2013.10.024
  • Yin, S., Shao, Y., Wu, A., Wang, Y., Chen, X., 2018. Expansion and Strength Properties of Cemented Backfill Using Sulphidic Mill Tailings. Construction and Building Materials, 165, 138-148. https://doi.org/10.1016/j.conbuildmat.2018.01.005
  • Zheng, J., Zhu, Y., Zhao, Z., 2016. Utilization of Limestone Powder and Water-Reducing Admixture in Cemented Paste Backfill of Coarse Copper Mine Tailings. Construction and Building Materials, 124, 31-36. https://doi.org/10.1016/j.conbuildmat.2016.07.055
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Tekin Yılmaz 0000-0003-3288-5192

Bayram Erçıkdı 0000-0003-4900-5382

Proje Numarası FDK 2016-5500
Yayımlanma Tarihi 30 Aralık 2022
Gönderilme Tarihi 11 Mart 2022
Kabul Tarihi 1 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 4

Kaynak Göster

APA Yılmaz, T., & Erçıkdı, B. (2022). DOĞAL ALKALİ MALZEMELERİN ÇİMENTOLU MACUN DOLGUNUN DAYANIM-DURAYLILIK VE MİKROYAPI PERFORMANSINA ETKİSİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 10(4), 1474-1483. https://doi.org/10.21923/jesd.1086405