Araştırma Makalesi
BibTex RIS Kaynak Göster

OPTIMIZATION OF ALKALINE–THERMAL HYDROLYSIS TO OBTAIN STRUVITE FROM DIGESTED SLUDGE USING A BOX–BEHNKEN DESIGN: SOLUBILIZATION OF NUTRIENTS AND METALS

Yıl 2022, Cilt: 10 Sayı: 4, 1278 - 1289, 30.12.2022
https://doi.org/10.21923/jesd.1096947

Öz

In this study, we investigated ways by which to optimize metals and nutrients solubilization from sewage sludge using alkaline–thermal hydrolysis and the Box–Behnken design. We also examined through struvite crystallization the recovery of solubilized nutrients from hydrolyzed liquid and determined the effect of NaOH concentration, the liquid/solid ratio, and temperature on the hydrolysis process. Nutrients solubilization was positively affected by decreasing liquid/sludge ratio and increasing NaOH concentration. Ca, Al, and Zn solubilization increased with increasing temperature. The optimum condition for solubilization of nutrients and metals was 0.7 M NaOH and a 5/1 mL/g liquid/solid ratio at 35 °C. EDS analyses of hydrolyzed sludge obtained under optimum conditions showed that the mass percentage of C, P, Fe, Al, and K decreased compared to that of the digested sludge. Under optimum conditions, the removal efficiencies of NH4+ and PO43- from hydrolyzed liquid by struvite precipitation were 57.43 and 79.22% at a N:Mg:P molar ratio of 1:1:1, and 73.31 and 99.02% at a N:Mg:P molar ratio of 1:1.5:1, respectively. XRD analyses of the dry precipitate showed hazenite in addition to struvite formation at a molar ratio of N:Mg:P of 1:1:1.

Destekleyen Kurum

Süleyman Demirel Üniversitesi

Proje Numarası

FYL-2018-5788

Teşekkür

This study was funded by the Research Project Funding Unit of Suleyman Demirel University (project no. FYL-2018-5788).

Kaynakça

  • Alhraishawi, A., Aslan, Ş., 2022. Anaerobik Çürütme Öncesi Atık Biyolojik Çamurların Mikrodalga Radyasyonu İle Dezentegrasyonu. Mühendislik Bilimleri ve Tasarım Dergisi, 10(2), 740-760.
  • Ali, T.U., Kim, D.J., 2016. Phosphorus Extraction and Sludge Dissolution by Acid and Alkali Treatments of Polyaluminum Chloride (PAC) Treated Wastewater Sludge. Bioresource Technology, 217, 233–238.
  • APHA, AWWA, WEF, 2005. Standard Methods for The Examination of Water and Wastewater. 21st ed., Washington, DC.
  • Arslanoğlu, H., Tümen, F., 2021. Potassium Struvite (Slow Release Fertilizer) and Activated Carbon Production: Resource Recovery from Vinasse and Grape Marc Organic Waste using Thermal Processing. Process Safety and Environmental Protection, 147, 1077-1087.
  • Barca, C., Martino, M., Hennebert, P., Roche, N., 2019. Kinetics and Capacity of Phosphorus Extraction from Solid Residues Obtained from Wet Air Oxidation of Sewage Sludge. Waste Management, 89, 275–283.
  • Bi, W., Li, Y., Hu, Y., 2014. Recovery of Phosphorus and Nitrogen from Alkaline Hydrolysis Supernatant of Excess Sludge by Magnesium Ammonium Phosphate. Bioresource Technology, 166, 1–8.
  • Cieslik, B., Konieczka, P., 2017. A Review of Phosphorus Recovery Methods at Various Steps of Wastewater Treatment and Sewage Sludge Management. The Concept of “No Solid Waste Generation” and Analytical Methods. Journal of Cleaner Production, 142, 1728–1740.
  • de Sousa, T.A.T., do Monte, F.P., Silva, J.V.D., Lopes, W.S., Leite, V.D., van Lier, J.B., de Sousa, J.T., 2021. Alkaline and Acid Solubilisation of Waste Activated Sludge. Water Science and Technology, 83, 2980–2996.
  • Donatello, S., Cheeseman, C.R., 2013. Recycling and Recovery Routes for Incinerated Sewage Sludge Ash (ISSA): A Review. Waste Management, 33, 2328–40.
  • Dong, C.H., Xie, X.Q., Wang, X.L., Zhani, Y., Yao, Y.J., 2009. Application of Box-Behnken Design in Optimisation for Polysaccharides Extraction from Cultured Mycelium of Cordyceps Sinensis. Food Bioproducts Processing, 87, 139–144.
  • Falayi, T., 2019. Alkaline Recovery of Phosphorous from Sewage Sludge and Stabilisation of Sewage Sludge Residue. Waste Management, 84, 166–172.
  • Franz, M., 2007. Phosphate Fertilizer from Sewage Sludge Ash (SSA). Waste Management, 28, 1809–18.
  • Hosseini, S.A., Raygan, S., Reaei, A., Jafari, A., 2017. Leaching of Nickel from a Secondary Source by Sulfuric Acid. Journal of Environmental Chemical Engineering, 5, 3922–3929.
  • Kim, M., Han, D.W., Kim, D.J., 2015. Selective Release of Phosphorus and Nitrogen from Waste Activated Sludge with Combined Thermal and Alkali Treatment. Bioresource Technology, 190, 522–5284.
  • Li, J., Xiong, D., Chen, H., Wang, R., Liang, Y., 2012. Physicochemical Factors Affecting Leaching of Laterite Ore in Hydrochloric Acid. Hydrometallurgy, 129, 14–18.
  • Li, H., Zou, S., Li, C., Jin, Y., 2013. Alkaline Post-Treatment for Improved Sludge Anaerobic Digestion. Bioresource Technology, 140, 187–191.
  • Meng, X., Huang, Q., Xu, J., Gao, H., Yan, J., 2019. A Review of Phosphorus Recovery from Different Thermal Treatment Products of Sewage Sludge. Waste Disposal and Sustainable Energy, 1, 99–115.
  • Nosrati, A., MacCarthy, J., Addai-Mensah, J., 2013. Acid Leaching and Rheological Behavior of Siliceous Goethite Ni Laterite Ore: Effect of Solid Loading and Temperature. In: Proceedings of Chemeca 2013 Australia, 404–412.
  • Sayılgan, E., Karacan, G., 2019. Characterization and Evalution of Removal Conditions of Lead-Zinc-Copper Flotation Plant Waste. Journal of Engineering Sciences and Design, 7(1), 175-181.
  • Semerci, N., Ahadi, S., Coşgun, S., 2021. Comparison of Dried Sludge and Sludge Ash for Phosphorus Recovery with Acidic and Alkaline Leaching. Water and Environment Journal, 35, 359–370.
  • Siciliano, A., Limonti, C., Curcio, G.M., Molinari, R., 2020. Advances in Struvite Precipitation Technologies for Nutrients Removal and Recovery from Aqueous Waste and Wastewater. Sustainability, 12(18), 7538.
  • Suarez-Iglesias, O., Urrea, J.L., Oulego, P., Collado, S., Diaz, M., 2017. Valuable compounds from sewage sludge by thermal hydrolysis and wet oxidation. A review, The Science of the Total Environment, 584–585,921–934.
  • Takahashi, M., Kato, S., Shima, H., Sarai, E., Ichioka, T., Hatyakawa, S., Miyajiri, H., 2001. Technology for Recovering Phosphorus from Incinerated Wastewater Treatment Sludge. Chemosphere 44(1), 23–9.
  • Takahaski, M., Takemoto, Y., Onsihi, K., 2015. Phosphorus Recovery from Carbonized Sewage Sludge by Hydrothermal Processes. Journal of Materials Science Engineering B, 5(1-2), 58–62.
  • Tolofari, A., Islam, M., Yuan, Q., 2020. Statistical Modeling of Phosphorus Solubilization from Chemical Sludge and Evaluation of Optimal Sodium Hydroxide Dose. Journal of Environmental Management, 255, 109824.
  • Uysal, A., Yılmazel, Y.D., Demirer, G.N., 2010. The Determination of Fertilizer Quality of the Formed Struvite from Effluent of a Sewage Sludge Anaerobic Digester. Journal of Hazardous Materials, 181, 248–254.
  • Uysal, A., Tuncer, D., Kır, E., Sardohan Köseoğlu, T., 2017. Recovery of Nutrients from Digested Sludge as Struvite with a Combination Process of Acid Hydrolysis and Donnan Dialysis. Water Science and Technology, 76(10), 2733–2741.
  • Uysal, A., Aydoğan, M., Çelik, E., 2019. Recovery of Phosphorus and Nitrogen from Sewage Sludge as Struvite using a Combined Alkali Hydrolysis and Thermal Treatment Process. In: Balkaya N., Guneysu S. (eds) Recycling and Reuse Approaches for Better Sustainability. Environmental Science and Engineering. Springer, Cham, pp 75-85.
  • Wang, Y., Xiao, Q., Zhong, H., Zheng, X., Wei, Y., 2016. Effect of Organic Matter on Phosphorus Recovery from Sewage Sludge Subjected to Microwave Hybrid Pretreatment. Journal of Environmental Sciences, 39, 29–36.
  • Watson, C., Clemens, J., Wichern, F., 2020. Hazenite: A New Secondary Phosphorus, Potassium and Magnesium Fertilizer. Plant, Soil and Environment, 66(1), 1–6.
  • Weissengruber, L., Möller, K., Puschenreiter, M., Friedel, J.K., 2018. Long-Term Soil Accumulation of Potentially Toxic Elements and Selected Organic Pollutants through Application of Recycled Phosphorus Fertilizers for Organic Farming Conditions. Nutrient Cycling Agroecosystems, 110, 427–449.
  • Xu, D., Zhong, C., Yin, K., Peng, S., Zhu, T., Cheng, G., 2018. Alkaline Solubilization of Excess Mixed Sludge and The Recovery of Released Phosphorus as Magnesium Ammonium Phosphate. Bioresource Technology, 249, 783–790.
  • Yang, H., Sun, H.J., Downs, R.T., 2011. Hazenite, KNaMg2(PO4)2⋅14H2O, A New Biologically Related Phosphate Mineral, from Mono Lake, California, U.S.A. American Mineralogist, 96, 675–681.
  • Yu, Y., Lei, Z., Yuan, T., Jiang, Y., Chen, N., Feng, C., Shimizu, K., Zhang, Z., 2017. Simultaneous Phosphorus and Nitrogen Recovery from Anaerobically Digested Sludge using a Hybrid System Coupling Hydrothermal Pretreatment with MAP Precipitation. Bioresource Technology, 243, 634-640.
  • Zin, M.M.T., Tiwari, D., Kim, D.J., 2021. Recovery of Ammonium and Phosphate as Struvite via Integrated Hydrolysis and Incineration of Sewage Sludge. Journal of Water Process Engineering, 39, 101697.

BOX–BEHNKEN DİZAYNI KULLANILARAK ÇÜRÜTÜLMÜŞ ÇAMURDAN STRÜVİT ELDE ETMEK İÇIN ALKALİ–TERMAL HİDROLİZİN OPTİMİZASYONU: NÜTRİENTLERİN VE METALLERIN ÇÖZÜNDÜRÜLMESİ

Yıl 2022, Cilt: 10 Sayı: 4, 1278 - 1289, 30.12.2022
https://doi.org/10.21923/jesd.1096947

Öz

Bu çalışmada, alkali–termal hidroliz ve Box–Behnken dizaynı kullanılarak arıtma çamurundan metallerin ve nütrientlerin çözündürülmesinin optimizasyonu araştırılmıştır. Çözündürülmüş nütrientlerin, hidroliz sıvısından geri kazanımı da strüvit kristalizasyonu ile araştırılmış ve hidroliz prosesi üzerine NaOH konsantrasyonu, sıvı/katı oranı ve sıcaklığın etkileri belirlenmiştir. Nütrientlerin çözündürülmesi, azalan sıvı/katı oranı ve artan NaOH konsantrasyonu ile pozitif olarak etkilenmiştir. Ca, Al ve Zn çözündürülmesi sıcaklık artışı ile artmıştır. Nütrientlerin ve metallerin çözündürülmesi için optimum koşullar 0,7 M NaOH, 5/1 mL/g sıvı/katı oranı ve 35 °C’de olmuştur. Optimum koşullar altında elde edilen hidrolize edilmiş çamurun EDS analiz sonuçları, C, P, Fe, Al ve K kütle yüzde değerlerinin çürütülmüş çamurunkine kıyasla azaldığını göstermiştir. Optimum koşullar altında, strüvit çöktürmesi ile hidroliz sıvısından NH4+ ve PO43- giderim verimleri sırasıyla N:Mg:P molar oranı 1:1:1 iken %57,43 ve %79,22 ve N:Mg:P molar oranı 1:1.5:1 iken %73,31 ve %99.02 olmuştur. Kuru çökeltinin XRD analizleri, N:Mg:P molar oranı 1:1:1 iken strüvit oluşumuna ek olarak hazenit oluşumunu da göstermiştir.

Proje Numarası

FYL-2018-5788

Kaynakça

  • Alhraishawi, A., Aslan, Ş., 2022. Anaerobik Çürütme Öncesi Atık Biyolojik Çamurların Mikrodalga Radyasyonu İle Dezentegrasyonu. Mühendislik Bilimleri ve Tasarım Dergisi, 10(2), 740-760.
  • Ali, T.U., Kim, D.J., 2016. Phosphorus Extraction and Sludge Dissolution by Acid and Alkali Treatments of Polyaluminum Chloride (PAC) Treated Wastewater Sludge. Bioresource Technology, 217, 233–238.
  • APHA, AWWA, WEF, 2005. Standard Methods for The Examination of Water and Wastewater. 21st ed., Washington, DC.
  • Arslanoğlu, H., Tümen, F., 2021. Potassium Struvite (Slow Release Fertilizer) and Activated Carbon Production: Resource Recovery from Vinasse and Grape Marc Organic Waste using Thermal Processing. Process Safety and Environmental Protection, 147, 1077-1087.
  • Barca, C., Martino, M., Hennebert, P., Roche, N., 2019. Kinetics and Capacity of Phosphorus Extraction from Solid Residues Obtained from Wet Air Oxidation of Sewage Sludge. Waste Management, 89, 275–283.
  • Bi, W., Li, Y., Hu, Y., 2014. Recovery of Phosphorus and Nitrogen from Alkaline Hydrolysis Supernatant of Excess Sludge by Magnesium Ammonium Phosphate. Bioresource Technology, 166, 1–8.
  • Cieslik, B., Konieczka, P., 2017. A Review of Phosphorus Recovery Methods at Various Steps of Wastewater Treatment and Sewage Sludge Management. The Concept of “No Solid Waste Generation” and Analytical Methods. Journal of Cleaner Production, 142, 1728–1740.
  • de Sousa, T.A.T., do Monte, F.P., Silva, J.V.D., Lopes, W.S., Leite, V.D., van Lier, J.B., de Sousa, J.T., 2021. Alkaline and Acid Solubilisation of Waste Activated Sludge. Water Science and Technology, 83, 2980–2996.
  • Donatello, S., Cheeseman, C.R., 2013. Recycling and Recovery Routes for Incinerated Sewage Sludge Ash (ISSA): A Review. Waste Management, 33, 2328–40.
  • Dong, C.H., Xie, X.Q., Wang, X.L., Zhani, Y., Yao, Y.J., 2009. Application of Box-Behnken Design in Optimisation for Polysaccharides Extraction from Cultured Mycelium of Cordyceps Sinensis. Food Bioproducts Processing, 87, 139–144.
  • Falayi, T., 2019. Alkaline Recovery of Phosphorous from Sewage Sludge and Stabilisation of Sewage Sludge Residue. Waste Management, 84, 166–172.
  • Franz, M., 2007. Phosphate Fertilizer from Sewage Sludge Ash (SSA). Waste Management, 28, 1809–18.
  • Hosseini, S.A., Raygan, S., Reaei, A., Jafari, A., 2017. Leaching of Nickel from a Secondary Source by Sulfuric Acid. Journal of Environmental Chemical Engineering, 5, 3922–3929.
  • Kim, M., Han, D.W., Kim, D.J., 2015. Selective Release of Phosphorus and Nitrogen from Waste Activated Sludge with Combined Thermal and Alkali Treatment. Bioresource Technology, 190, 522–5284.
  • Li, J., Xiong, D., Chen, H., Wang, R., Liang, Y., 2012. Physicochemical Factors Affecting Leaching of Laterite Ore in Hydrochloric Acid. Hydrometallurgy, 129, 14–18.
  • Li, H., Zou, S., Li, C., Jin, Y., 2013. Alkaline Post-Treatment for Improved Sludge Anaerobic Digestion. Bioresource Technology, 140, 187–191.
  • Meng, X., Huang, Q., Xu, J., Gao, H., Yan, J., 2019. A Review of Phosphorus Recovery from Different Thermal Treatment Products of Sewage Sludge. Waste Disposal and Sustainable Energy, 1, 99–115.
  • Nosrati, A., MacCarthy, J., Addai-Mensah, J., 2013. Acid Leaching and Rheological Behavior of Siliceous Goethite Ni Laterite Ore: Effect of Solid Loading and Temperature. In: Proceedings of Chemeca 2013 Australia, 404–412.
  • Sayılgan, E., Karacan, G., 2019. Characterization and Evalution of Removal Conditions of Lead-Zinc-Copper Flotation Plant Waste. Journal of Engineering Sciences and Design, 7(1), 175-181.
  • Semerci, N., Ahadi, S., Coşgun, S., 2021. Comparison of Dried Sludge and Sludge Ash for Phosphorus Recovery with Acidic and Alkaline Leaching. Water and Environment Journal, 35, 359–370.
  • Siciliano, A., Limonti, C., Curcio, G.M., Molinari, R., 2020. Advances in Struvite Precipitation Technologies for Nutrients Removal and Recovery from Aqueous Waste and Wastewater. Sustainability, 12(18), 7538.
  • Suarez-Iglesias, O., Urrea, J.L., Oulego, P., Collado, S., Diaz, M., 2017. Valuable compounds from sewage sludge by thermal hydrolysis and wet oxidation. A review, The Science of the Total Environment, 584–585,921–934.
  • Takahashi, M., Kato, S., Shima, H., Sarai, E., Ichioka, T., Hatyakawa, S., Miyajiri, H., 2001. Technology for Recovering Phosphorus from Incinerated Wastewater Treatment Sludge. Chemosphere 44(1), 23–9.
  • Takahaski, M., Takemoto, Y., Onsihi, K., 2015. Phosphorus Recovery from Carbonized Sewage Sludge by Hydrothermal Processes. Journal of Materials Science Engineering B, 5(1-2), 58–62.
  • Tolofari, A., Islam, M., Yuan, Q., 2020. Statistical Modeling of Phosphorus Solubilization from Chemical Sludge and Evaluation of Optimal Sodium Hydroxide Dose. Journal of Environmental Management, 255, 109824.
  • Uysal, A., Yılmazel, Y.D., Demirer, G.N., 2010. The Determination of Fertilizer Quality of the Formed Struvite from Effluent of a Sewage Sludge Anaerobic Digester. Journal of Hazardous Materials, 181, 248–254.
  • Uysal, A., Tuncer, D., Kır, E., Sardohan Köseoğlu, T., 2017. Recovery of Nutrients from Digested Sludge as Struvite with a Combination Process of Acid Hydrolysis and Donnan Dialysis. Water Science and Technology, 76(10), 2733–2741.
  • Uysal, A., Aydoğan, M., Çelik, E., 2019. Recovery of Phosphorus and Nitrogen from Sewage Sludge as Struvite using a Combined Alkali Hydrolysis and Thermal Treatment Process. In: Balkaya N., Guneysu S. (eds) Recycling and Reuse Approaches for Better Sustainability. Environmental Science and Engineering. Springer, Cham, pp 75-85.
  • Wang, Y., Xiao, Q., Zhong, H., Zheng, X., Wei, Y., 2016. Effect of Organic Matter on Phosphorus Recovery from Sewage Sludge Subjected to Microwave Hybrid Pretreatment. Journal of Environmental Sciences, 39, 29–36.
  • Watson, C., Clemens, J., Wichern, F., 2020. Hazenite: A New Secondary Phosphorus, Potassium and Magnesium Fertilizer. Plant, Soil and Environment, 66(1), 1–6.
  • Weissengruber, L., Möller, K., Puschenreiter, M., Friedel, J.K., 2018. Long-Term Soil Accumulation of Potentially Toxic Elements and Selected Organic Pollutants through Application of Recycled Phosphorus Fertilizers for Organic Farming Conditions. Nutrient Cycling Agroecosystems, 110, 427–449.
  • Xu, D., Zhong, C., Yin, K., Peng, S., Zhu, T., Cheng, G., 2018. Alkaline Solubilization of Excess Mixed Sludge and The Recovery of Released Phosphorus as Magnesium Ammonium Phosphate. Bioresource Technology, 249, 783–790.
  • Yang, H., Sun, H.J., Downs, R.T., 2011. Hazenite, KNaMg2(PO4)2⋅14H2O, A New Biologically Related Phosphate Mineral, from Mono Lake, California, U.S.A. American Mineralogist, 96, 675–681.
  • Yu, Y., Lei, Z., Yuan, T., Jiang, Y., Chen, N., Feng, C., Shimizu, K., Zhang, Z., 2017. Simultaneous Phosphorus and Nitrogen Recovery from Anaerobically Digested Sludge using a Hybrid System Coupling Hydrothermal Pretreatment with MAP Precipitation. Bioresource Technology, 243, 634-640.
  • Zin, M.M.T., Tiwari, D., Kim, D.J., 2021. Recovery of Ammonium and Phosphate as Struvite via Integrated Hydrolysis and Incineration of Sewage Sludge. Journal of Water Process Engineering, 39, 101697.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Ayla Uysal 0000-0002-4580-4593

Mehmet Aydoğan 0000-0003-1011-1057

Proje Numarası FYL-2018-5788
Yayımlanma Tarihi 30 Aralık 2022
Gönderilme Tarihi 1 Nisan 2022
Kabul Tarihi 28 Temmuz 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 4

Kaynak Göster

APA Uysal, A., & Aydoğan, M. (2022). OPTIMIZATION OF ALKALINE–THERMAL HYDROLYSIS TO OBTAIN STRUVITE FROM DIGESTED SLUDGE USING A BOX–BEHNKEN DESIGN: SOLUBILIZATION OF NUTRIENTS AND METALS. Mühendislik Bilimleri Ve Tasarım Dergisi, 10(4), 1278-1289. https://doi.org/10.21923/jesd.1096947