Araştırma Makalesi
BibTex RIS Kaynak Göster

YAPIŞKAN PÜSKÜRTME YÖNTEMİMDE ÜRETİM PARAMETRELERİNİN ÖNEMİ VE ÖRNEK UYGULAMA

Yıl 2022, Cilt: 10 Sayı: 4, 1354 - 1361, 30.12.2022
https://doi.org/10.21923/jesd.1103808

Öz

Çalışmada eklemeli imalat yöntemleri, özellikle de yapışkan püskürtme teknolojisinden detaylı bir şekilde bahsedilmiştir. Eklemeli imalat, geleneksel bilgisayar destekli üretimdeki talaş kaldırma prensibinin aksine malzemelerin katmanlar halinde birleştirilerek üst üste eklenmesi prensibine dayanan çok karmaşık geometrili objelerin dahi kolaylıkla üretilmesine imkan sağlayan pratik metodudur. Yapışkan püskürtme, önemli bir eklemeli imalat yöntemidir. Bu yöntemde tanecik morfolojisi, boyutu, dağılımı, toz akışkanlığı, paketleme yoğunluğu, katman kalınlığı, baskı hızı, yapışkan doygunluğu gibi parametreler baskı kalitesini etkilemektedir. Ayrıca bu çalışmada yapışkan püskürtme yöntemi ile üç farklı katman kalınlığında deney örnekleri üretilerek yüzey kalitesi incelenmiştir. Deney sonuçlarına göre artan katman kalınlığı ile yüzey kalitesinin bozulduğu tespit edilmiştir.

Kaynakça

  • Almaghariz, E. S., Conner, B. P., Lenner, L., Gullapalli, R., Manogharan, G. P., Lamoncha, B., Fang, M., 2016. Quantifying the Role of Part Design Complexity in Using 3D Sand Printing for Molds and Cores. International Journal of Metalcasting, 10(3), 240-252.
  • ASTM., (2012). Standard terminology for additive manufacturing technologies. In. West Conshohocken, PA: ASTM International.
  • Bae, C.-J., Halloran, J. W., 2018. A segregation model study of suspension-based additive manufacturing. Journal of the European Ceramic Society, 38(15), 5160-5166.
  • Bartolo, P. J., Gaspar, J., 2008. Metal filled resin for stereolithography metal part. CIRP Annals, 57(1), 235-238.
  • Bhushan, B., Caspers, M., 2017. An overview of additive manufacturing (3D printing) for microfabrication. Microsystem Technologies, 23(4), 1117-1124.
  • Deng, F., Nguyen, Q.-K., Zhang, P., 2020. Multifunctional liquid metal lattice materials through hybrid design and manufacturing. Additive Manufacturing, 33, 101117.
  • Di Angelo, L., Di Stefano, P., Marzola, A., 2017. Surface quality prediction in FDM additive manufacturing. The International Journal of Advanced Manufacturing Technology, 93(9), 3655-3662.
  • Ederer, I., Hartmann, A. D., 2013. Method for producing three-dimensional models with special construction platforms and drive systems (Germany Patent No. DE 10 2012 010 272 A1). G. P. a. T. M. Office.
  • Egger, G., Gygax, P. E., Glardon, R., ve Karapatis, N., 1999. Optimization of powder layer density in selective laser sintering.
  • Elliott, A. M., AlSalihi, S., Merriman, A. L., ve Basti, M. M., 2016. Infiltration of Nanoparticles into Porous Binder Jet Printed Parts. American Journal of Engineering and Applied Sciences, 9, 128-133.
  • EnvisionTEC., 2020. The Viridis3D Story. Retrieved 23 April from https://envisiontec.com/3d-printers/robotic-additive-manufacturing/
  • German, R. M., 1992. Prediction of sintered density for bimodal powder mixtures. Metallurgical Transactions A, 23(5), 1455-1465.
  • Hafkamp, T., van Baars, G., de Jager, B., Etman, P., 2018. A feasibility study on process monitoring and control in vat photopolymerization of ceramics. Mechatronics, 56, 220-241.
  • Kodama, H.,1981. Automatic method for fabricating a three‐dimensional plastic model with photo‐hardening polymer. Review of Scientific Instruments, 52(11), 1770-1773.
  • Kumar, A., Bai, Y., Eklund, A., Williams, C. B., 2017. Effects of Hot Isostatic Pressing on Copper Parts Fabricated via Binder Jetting. Procedia Manufacturing, 10, 935-944.
  • Lv, X., Ye, F., Cheng, L., Fan, S., Liu, Y., 2019. Binder jetting of ceramics: Powders, binders, printing parameters, equipment, and post-treatment. Ceramics International, 45(10), 12609-12624.
  • Mirzababaei, S., Pasebani, S., 2019. A Review on Binder Jet Additive Manufacturing of 316L Stainless Steel. Journal of Manufacturing and Materials Processing, 3(3), 82.
  • Mitchell, A., Lafont, U., Hołyńska, M., Semprimoschnig, C., 2018. Additive manufacturing — A review of 4D printing and future applications. Additive Manufacturing, 24, 606-626.
  • Miyanaji, H., Momenzadeh, N., Yang, L., 2018. Effect of printing speed on quality of printed parts in Binder Jetting Process. Additive Manufacturing, 20, 1-10.
  • Miyanaji, H., Zhang, S., Yang, L., 2018. A new physics-based model for equilibrium saturation determination in binder jetting additive manufacturing process. International Journal of Machine Tools and Manufacture, 124, 1-11.
  • Morouço, P., Biscaia, S., Viana, T., Franco, M., Malça, C., Mateus, A., Moura, C., Ferreira, F. C., Mitchell, G., Alves, N. M., 2016. Fabrication of Poly( ε-caprolactone) Scaffolds Reinforced with Cellulose Nanofibers, with and without the Addition of Hydroxyapatite Nanoparticles. BioMed Research International, 2016, 1596157.
  • Mostafaei, A., Elliott, A. M., Barnes, J. E., Li, F., Tan, W., Cramer, C. L., Nandwana, P., Chmielus, M., 2021. Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges. Progress in Materials Science, 119, 100707.
  • Pham, D. T., Gault, R. S., 1998. A comparison of rapid prototyping technologies. International Journal of Machine Tools and Manufacture, 38(10), 1257-1287.
  • Polzin, C., Spath, S., Seitz, H., 2013. Characterization and evaluation of a PMMA‐based 3D printing process. Rapid Prototyping Journal, 19(1), 37-43.
  • Sachs, E. M., Haggerty, J. S., Cima, M. J., Williams, P. A., 1993. Three-dimensional printing techniques (United States Patent No. 5,204,055). U. S. Patent.
  • Sama, S. R., Badamo, T., Lynch, P., Manogharan, G., 2019. Novel sprue designs in metal casting via 3D sand-printing. Additive Manufacturing, 25, 563-578.
  • Sivarupan, T., Upadhyay, M., Ali, Y., El Mansori, M., Dargusch, M. S., 2019. Reduced consumption of materials and hazardous chemicals for energy efficient production of metal parts through 3D printing of sand molds. Journal of cleaner production, 224, 411-420.
  • Snelling, D., Li, Q., Meisel, N., Williams, C. B., Batra, R. C., Druschitz, A. P., 2015. Lightweight Metal Cellular Structures Fabricated via 3D Printing of Sand Cast Molds. Advanced Engineering Materials, 17(7), 923-932.
  • Sun, W., Dcosta, D., Lin, F., El-Raghy, T., 2002. Freeform fabrication of Ti3SiC2 powder-based structures: Part i Integrated fabrication process. Journal of Materials Processing Technology, 127, 343-351.
  • Suwanprateeb, J., Chumnanklang, R., 2006. Three-dimensional printing of porous polyethylene structure using water-based binders. J Biomed Mater Res B Appl Biomater, 78(1), 138-145.
  • Swainson, W. K., 1977. Method, medium and apparatus for producing three-dimensional figure product (United States Patent No. 4,041,476). U. S. Patent.
  • Tethon3D., 2020. Ferrolite Iron Resin – 500ml. Retrieved 20 April from https://tethon3d.com/product/ferrolite-iron-resin-500ml/
  • Voxeljet., 2020. Largest industrial 3d sand printing system in the world: the vx4000. Retrieved 20 May from https://www.voxeljet.com/3d-printing-systems/vx4000/
  • Wang, J., Sama, S. R., Manogharan, G., 2019. Re-Thinking Design Methodology for Castings: 3D Sand-Printing and Topology Optimization. International Journal of Metalcasting, 13(1), 2-17.
  • Wu, B. M., Borland, S. W., Giordano, R. A., Cima, L. G., Sachs, E. M., Cima, M. J., 1996. Solid free-form fabrication of drug delivery devices. Journal of Controlled Release, 40(1), 77-87.
  • Ytec., 2022. Plan B. Retrieved 28 January from https://ytec3d.com/plan-b/
  • Zhang, W., Melcher, R., Travitzky, N., Bordia, R. K., Greil, P., 2009. Three-Dimensional Printing of Complex-Shaped Alumina/Glass Composites. Advanced Engineering Materials, 11(12), 1039-1043.
  • Zhang, Y., Wu, L., Guo, X., Kane, S., Deng, Y., Jung, Y.-G., Lee, J.-H., Zhang, J., 2018. Additive Manufacturing of Metallic Materials: A Review. Journal of Materials Engineering and Performance, 27(1), 1-13.
  • Ziaee, M., Crane, N. B., 2019. Binder jetting: A review of process, materials, and methods. Additive Manufacturing, 28, 781-801.

SAMPLE ARTICLE TEMPLATE TITLE

Yıl 2022, Cilt: 10 Sayı: 4, 1354 - 1361, 30.12.2022
https://doi.org/10.21923/jesd.1103808

Öz

In the study, additive manufacturing methods and especially binder jetting technology are mentioned. Additive manufacturing is a practical method, allows easy production of objects has very complex geometries, that based on the principle of adding materials building up layer by layer, in contrast to the machining principle of the traditional computer-aided manufacturing. Binder jetting is an important additive manufacturing method. The print quality can be affected some parameters such as particle morphology, size, distribution, powder spreadability, packaging density, layer thickness, printing speed, binder saturation. In addition, test samples that have three different layer thicknesses was manufactured and the surface quality of them was investigated in this study too. According to the test results, it was determined that the surface quality deteriorated with increasing layer thickness.

Kaynakça

  • Almaghariz, E. S., Conner, B. P., Lenner, L., Gullapalli, R., Manogharan, G. P., Lamoncha, B., Fang, M., 2016. Quantifying the Role of Part Design Complexity in Using 3D Sand Printing for Molds and Cores. International Journal of Metalcasting, 10(3), 240-252.
  • ASTM., (2012). Standard terminology for additive manufacturing technologies. In. West Conshohocken, PA: ASTM International.
  • Bae, C.-J., Halloran, J. W., 2018. A segregation model study of suspension-based additive manufacturing. Journal of the European Ceramic Society, 38(15), 5160-5166.
  • Bartolo, P. J., Gaspar, J., 2008. Metal filled resin for stereolithography metal part. CIRP Annals, 57(1), 235-238.
  • Bhushan, B., Caspers, M., 2017. An overview of additive manufacturing (3D printing) for microfabrication. Microsystem Technologies, 23(4), 1117-1124.
  • Deng, F., Nguyen, Q.-K., Zhang, P., 2020. Multifunctional liquid metal lattice materials through hybrid design and manufacturing. Additive Manufacturing, 33, 101117.
  • Di Angelo, L., Di Stefano, P., Marzola, A., 2017. Surface quality prediction in FDM additive manufacturing. The International Journal of Advanced Manufacturing Technology, 93(9), 3655-3662.
  • Ederer, I., Hartmann, A. D., 2013. Method for producing three-dimensional models with special construction platforms and drive systems (Germany Patent No. DE 10 2012 010 272 A1). G. P. a. T. M. Office.
  • Egger, G., Gygax, P. E., Glardon, R., ve Karapatis, N., 1999. Optimization of powder layer density in selective laser sintering.
  • Elliott, A. M., AlSalihi, S., Merriman, A. L., ve Basti, M. M., 2016. Infiltration of Nanoparticles into Porous Binder Jet Printed Parts. American Journal of Engineering and Applied Sciences, 9, 128-133.
  • EnvisionTEC., 2020. The Viridis3D Story. Retrieved 23 April from https://envisiontec.com/3d-printers/robotic-additive-manufacturing/
  • German, R. M., 1992. Prediction of sintered density for bimodal powder mixtures. Metallurgical Transactions A, 23(5), 1455-1465.
  • Hafkamp, T., van Baars, G., de Jager, B., Etman, P., 2018. A feasibility study on process monitoring and control in vat photopolymerization of ceramics. Mechatronics, 56, 220-241.
  • Kodama, H.,1981. Automatic method for fabricating a three‐dimensional plastic model with photo‐hardening polymer. Review of Scientific Instruments, 52(11), 1770-1773.
  • Kumar, A., Bai, Y., Eklund, A., Williams, C. B., 2017. Effects of Hot Isostatic Pressing on Copper Parts Fabricated via Binder Jetting. Procedia Manufacturing, 10, 935-944.
  • Lv, X., Ye, F., Cheng, L., Fan, S., Liu, Y., 2019. Binder jetting of ceramics: Powders, binders, printing parameters, equipment, and post-treatment. Ceramics International, 45(10), 12609-12624.
  • Mirzababaei, S., Pasebani, S., 2019. A Review on Binder Jet Additive Manufacturing of 316L Stainless Steel. Journal of Manufacturing and Materials Processing, 3(3), 82.
  • Mitchell, A., Lafont, U., Hołyńska, M., Semprimoschnig, C., 2018. Additive manufacturing — A review of 4D printing and future applications. Additive Manufacturing, 24, 606-626.
  • Miyanaji, H., Momenzadeh, N., Yang, L., 2018. Effect of printing speed on quality of printed parts in Binder Jetting Process. Additive Manufacturing, 20, 1-10.
  • Miyanaji, H., Zhang, S., Yang, L., 2018. A new physics-based model for equilibrium saturation determination in binder jetting additive manufacturing process. International Journal of Machine Tools and Manufacture, 124, 1-11.
  • Morouço, P., Biscaia, S., Viana, T., Franco, M., Malça, C., Mateus, A., Moura, C., Ferreira, F. C., Mitchell, G., Alves, N. M., 2016. Fabrication of Poly( ε-caprolactone) Scaffolds Reinforced with Cellulose Nanofibers, with and without the Addition of Hydroxyapatite Nanoparticles. BioMed Research International, 2016, 1596157.
  • Mostafaei, A., Elliott, A. M., Barnes, J. E., Li, F., Tan, W., Cramer, C. L., Nandwana, P., Chmielus, M., 2021. Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges. Progress in Materials Science, 119, 100707.
  • Pham, D. T., Gault, R. S., 1998. A comparison of rapid prototyping technologies. International Journal of Machine Tools and Manufacture, 38(10), 1257-1287.
  • Polzin, C., Spath, S., Seitz, H., 2013. Characterization and evaluation of a PMMA‐based 3D printing process. Rapid Prototyping Journal, 19(1), 37-43.
  • Sachs, E. M., Haggerty, J. S., Cima, M. J., Williams, P. A., 1993. Three-dimensional printing techniques (United States Patent No. 5,204,055). U. S. Patent.
  • Sama, S. R., Badamo, T., Lynch, P., Manogharan, G., 2019. Novel sprue designs in metal casting via 3D sand-printing. Additive Manufacturing, 25, 563-578.
  • Sivarupan, T., Upadhyay, M., Ali, Y., El Mansori, M., Dargusch, M. S., 2019. Reduced consumption of materials and hazardous chemicals for energy efficient production of metal parts through 3D printing of sand molds. Journal of cleaner production, 224, 411-420.
  • Snelling, D., Li, Q., Meisel, N., Williams, C. B., Batra, R. C., Druschitz, A. P., 2015. Lightweight Metal Cellular Structures Fabricated via 3D Printing of Sand Cast Molds. Advanced Engineering Materials, 17(7), 923-932.
  • Sun, W., Dcosta, D., Lin, F., El-Raghy, T., 2002. Freeform fabrication of Ti3SiC2 powder-based structures: Part i Integrated fabrication process. Journal of Materials Processing Technology, 127, 343-351.
  • Suwanprateeb, J., Chumnanklang, R., 2006. Three-dimensional printing of porous polyethylene structure using water-based binders. J Biomed Mater Res B Appl Biomater, 78(1), 138-145.
  • Swainson, W. K., 1977. Method, medium and apparatus for producing three-dimensional figure product (United States Patent No. 4,041,476). U. S. Patent.
  • Tethon3D., 2020. Ferrolite Iron Resin – 500ml. Retrieved 20 April from https://tethon3d.com/product/ferrolite-iron-resin-500ml/
  • Voxeljet., 2020. Largest industrial 3d sand printing system in the world: the vx4000. Retrieved 20 May from https://www.voxeljet.com/3d-printing-systems/vx4000/
  • Wang, J., Sama, S. R., Manogharan, G., 2019. Re-Thinking Design Methodology for Castings: 3D Sand-Printing and Topology Optimization. International Journal of Metalcasting, 13(1), 2-17.
  • Wu, B. M., Borland, S. W., Giordano, R. A., Cima, L. G., Sachs, E. M., Cima, M. J., 1996. Solid free-form fabrication of drug delivery devices. Journal of Controlled Release, 40(1), 77-87.
  • Ytec., 2022. Plan B. Retrieved 28 January from https://ytec3d.com/plan-b/
  • Zhang, W., Melcher, R., Travitzky, N., Bordia, R. K., Greil, P., 2009. Three-Dimensional Printing of Complex-Shaped Alumina/Glass Composites. Advanced Engineering Materials, 11(12), 1039-1043.
  • Zhang, Y., Wu, L., Guo, X., Kane, S., Deng, Y., Jung, Y.-G., Lee, J.-H., Zhang, J., 2018. Additive Manufacturing of Metallic Materials: A Review. Journal of Materials Engineering and Performance, 27(1), 1-13.
  • Ziaee, M., Crane, N. B., 2019. Binder jetting: A review of process, materials, and methods. Additive Manufacturing, 28, 781-801.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Hasan Baş 0000-0001-5214-3394

Fatih Yapıcı 0000-0002-2493-6781

İbrahim İnanç 0000-0003-1988-1197

Yayımlanma Tarihi 30 Aralık 2022
Gönderilme Tarihi 14 Nisan 2022
Kabul Tarihi 16 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 4

Kaynak Göster

APA Baş, H., Yapıcı, F., & İnanç, İ. (2022). YAPIŞKAN PÜSKÜRTME YÖNTEMİMDE ÜRETİM PARAMETRELERİNİN ÖNEMİ VE ÖRNEK UYGULAMA. Mühendislik Bilimleri Ve Tasarım Dergisi, 10(4), 1354-1361. https://doi.org/10.21923/jesd.1103808