Araştırma Makalesi
BibTex RIS Kaynak Göster

UÇUCU KÜL, SİLİS DUMANI VE TÜF İLE STABİLİZE EDİLMİŞ BENTONİTTE MEYDANA GELEN MOLEKÜLER DEĞİŞİMLERİN FOURİER DÖNÜŞÜMLÜ KIZILÖTESİ SPEKTROSKOPİSİ (FT-IR) YÖNTEMİ İLE BELİRLENMESİ

Yıl 2023, Cilt: 11 Sayı: 1, 94 - 112, 27.03.2023
https://doi.org/10.21923/jesd.1166834

Öz

Kolay uygulanabilir ve ekonomik bir yöntem olması nedeniyle günümüzde çok fazla tercih edilen stabilizasyon, killi zemine eklenen katkı malzemesi ve zemin arasında oluşan puzolanik reaksiyonların bir sonucu olarak meydana gelmektedir. Oluşan puzolanik reaksiyonlar ise zeminde moleküler değişimlere neden olmaktadır. Bu değişimleri belirlemenin en yaygın yolu ise Fourier Dönüşümlü Kızılötesi Spektroskopisi (FT-IR) yöntemidir. Bu çalışmada, katkı malzemesi olarak uçucu kül ve silis dumanı ile asidik ve bazik tüfler kullanılarak hazırlanan ve 28 günlük kür uygulanan örneklerde FT-IR çalışmaları yapılmış ve stabilizasyon sonrası meydana gelen moleküler değişimler incelenmiştir. Analizler sonucunda bazik tüfün kullanıldığı örnekte, (Ca, Mg) CO3 gerilimiyle ilişkili olan 1431 cm-1’de yeni bir pik oluşmuştur. Uçucu külün kullanıldığı örnekte CaO oranı etkisiyle gelişen puzolanik reaksiyonlar sonucunda oluşan C-S-H ve C-A-S-H bileşikleri ile ilişkili 1416 cm-1 dalga sayısında oluşan yeni bir pik belirlenmiştir. Silis dumanı ve bazik tüfün birlikte kullanıldığı örnekte 1363 cm-1 ve 1431 cm-1 dalga sayılarında yeni pikler oluşmuştur ve bu pikler (Ca, Mg) CO3 gerilimiyle ilişkilidir. Asidik tüf ve uçucu külün kullanıldığı örnekte ise C-S-H ve C-A-S-H bileşikleri formunda kalsit oluşumu ile ilişkili 1363 cm-1 ve 1416 cm-1 dalga sayılarında iki yeni pik meydana gelmiştir. Çalışmanın sonuçlarına göre puzolanik reaksiyonların en iyi geliştiği örnekler %10 bazik tüf ve %10 silis dumanı ile %10 asidik tüf ve %10 uçucu kül katkılı örneklerdir.

Kaynakça

  • Akbulut, A., 1996. Bentonit. MTA Eğitim Serisi-32, Ankara.
  • Aksoy, H.S., Yılmaz, M., Akarsu, E.E., 2008. Killi Bir Zeminin Tunçbilek Uçucu Külü Kullanılarak Stabilizasyonu. Doğu Anadolu Bölgeleri Araştırmaları.
  • Al-Rawas, A.A., Hago, A.W., Al-Sarmi, H., 2005. Effect of Lime, Cement and Sarooj (Artificial Pozzolan) on The Swelling Potential of an Expansive Soil from Oman. Building & Environment, 40(5), 681-687.
  • Amiralian, S., 2013. Study on Soil Stabilisation Technique Using Lime & Fly Ash. Master Thesis, Faculty of Science and Engineering, Department of Civil Engineering, Curtin University.
  • Anon, 2010. JASCO FTIR Seminar. http://www.jasco.hu/konyvtar/FT-IR-Grundl.-Seminar.pdf.
  • Asgari, M.R., Dezfuli, A.B., Bayat, M., 2015. Experimental Study on Stabilization of a Low Plasticity Clayey Coil With Cement/Lime. Arabian Journal of Geosciences, 8(3), 1439-1452.
  • Aslan Topçuoğlu, Y., 2020. Farklı Katkı Maddelerinin Zeminlerin Mühendislik Özellikleri Üzerindeki Etkisi. Doktora Tezi, Fırat Üniversitesi, Elazığ.
  • ASTM C 618-12, 2012. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in Concrete. West Conshohocken, ASTM International. PA.
  • ASTM D698-12e2, 2012. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort. American Society for Testing and Materials .
  • Attoh-Okine, N.O., 1995. Lime Treatment of Laterite Soils and Gravels-Revisited. Constr. Build. Mater, 9(5), 283¬-287.
  • Azadegan, O., Jafari, S.H., Li, J., 2012. Compaction Characteristics and Mechanical Properties of Lime/Cement Treated Granular Soils. Electronic Journal of Geotechnical Engineering, 17, 2275-2284.
  • Bandipally, S., 2017. Characterization of Lime-Treated Soils for Assessing Short-Term Strength Behavior. Master Thesis, Geotechnical Engineering Division, Department of Civil Engineerıng, Indian Institute of Technology Madras.
  • Bilgiç, C., Bilgiç, Ş., 2018. Aapplication of Fourier Transform Infrared (FTIR) Spectroscopy to Analysis of Clays. Nevşehir Bilim ve Teknoloji Dergisi, 8(IMSMATEC Özel Sayı), 37-46.
  • Boardman, D.I., Glendinning, S., Rogers, C.D.F., 2001. Development of Stabilization and Solidification in Lime-Clay Mixes. Geotechnique, 51(6), 533-543.
  • Bukka, K., Miller, J.D., Shabtai, J., 1992. FTIR Study of Deuterated Montmorillonites: Structural Features Relevant to Pillared Clay Stability. Clays and Clay Minerals, 40, 92-102.
  • Chen, K., Wu, D., Zhang, Z., Pan, C., Shen, X., Xia, L., Zang, J., 2022. Modeling and Optimization of Fly Ash–Slag-Based Geopolymer Using Response Surface Method And its Application in Soft Soil Stabilization. Construction and Building Materials, 315.
  • Cheng, Y., Wang, S., Li, J., Huang, X., Li, C., Wu, J., 2018. Engineering and Mineralogical Properties of Stabilized Expansive Soil Compositing Lime and Natural Pozzolans. Construction and Building Materials, 187, 1031-1038.
  • Clayden, N., Esposito, S., Aronne, A., Pernice, P., 1999. Solid state 27Al NMR and FTIR study of lanthanum aluminosilicate glasses. J. Non-Cryst. Solids 258 (1-3), 11-19.
  • Criado, M., Fernández-Jiménez, A., Palomo, A., 2007. Alkali activation of fly ash: effect of the SiO2/Na2O ratio: Part I: FTIR study. Microporous Mesoporous Mater. 106 (1-3), 180-191.
  • Cuisinier, O., Auriol, J.C., Le Borgne, T., Deneele, D., 2011. Microstructure and Hydraulic Conductivity of a Compacted Lime-Treated Soil. Engineering Geology, 123(3), 187-193.
  • Çakatay, U., Aydın, S., Belce A., 2010. Biyokimyada Temel Hesaplamalar, (s. 1-64). Kitapta Bölüm/Araştırma Kitabı, İstanbul Üniversitesi Basım ve Yayınevi Müdürlüğü.
  • Dorum, A., Yılmaz, B., Koçak, Y., Uçar, A., 2010. Puzolan Yüzey Özelliklerinin Çimento Harçlarının Fiziksel ve Mekanik Özelliklerine Etkisi. e-Journal of New World Sciences Academy, 5(2), 448-462.
  • Eisazadeh, A., Kassim, K.A., Nur, H., 2012. Solid-State NMR and FTIR Studies of Lime Stabilized Montmorillonitic and Lateritic Clays. Applied Clay Science, 67-68, 5-10.
  • Etim, R.K., Attah, I.C., Ekpo, D.U., Usanga, I.N., 2021. Evaluation on Stabilization Role of Lime and Cement in Expansive Black Clay–Oyster Shell Ash Composite. Transportation Infrastructure Geotechnology.
  • Genç, S., 2009. Şişen Zeminler ve Bentonit-Kaolin Karışımlarının Şişme Özellikleri. Yüksek Lisans Tezi, İstanbul Üniversitesi, İstanbul.
  • Gomes, C.E.M., Ferreira, O.P., 2005. Analyses of Microstructural Proporties of Va/Veova Copolymer Modified Cement Pastes. Polimeros: Ciencia E Tecnologia, 15 (3), 193-198.
  • Gomes, C.E.M., Ferreira, O.P., Fernandes, M.R., 2005. Influence of Vinyl Acetate-Versatic Vinylester Copolymer on The Microstructural Characteristics of Cement Pastes. Material Research, 8 (1), 51-56.
  • Goodarzi, A.R. Goodarzi, S.H., Akbari, H.R., 2015. Assessing Geo-Mechanical and Micro-Structural Performance of Modified Expansive Clayey Soil by Silica Fume As İndustrial Waste. Iranian Journal of Science And Technology-Transactions of Civil Engineering, 39(C2), 333-350.
  • Govin, A., Peschard, A., Guyonnet, R., 2006. Modification of Cement Hydration at Early Ages by Natural and Heated Wood. Cement Concrete Composites, 28 (1), 12-20.
  • Gunasekaran, S., Anbalagan, G., 2007. Spectroscopic Characterization of Natural Calcite Minerals. Spectrochimica Acta (Part A), 68, 656-664.
  • Gündüz, T., 1990. İnstrümental Analiz, (s.122,123). Bilge Yayıncılık, Ankara.
  • Hajimohammadi, A., Provis, J.L., Van Deventer, J.S.J., 2011. The Effect of Silica Availability on The Mechanism of Geopolymerisation. Cement and Concrete Research, 41(3), 210-216.
  • Harichane, K., Ghrici, M., Khebizi, W., Missoum, H., 2011. Effet de la combinaison de la chaux et de la pouzzolane naturelle sur la durabilité des sols argileux. Proceedings of 29th meeting of AUGC-Tlemcen, Algeria, 65-75.
  • Hossain, K.M.A., Mol, L., 2011. Some Engineering Properties of Stabilized Clayey Soils Incorporating Natural Pozzolans and Industrial Wastes. Construction and Building Materials, 25(8), 3495-3501.
  • Karakaya, M.Ç., 2006. Kil Minerallerinin Özellikleri ve Tanımlama Yöntemleri. Bizim Büro Basımevi, Ankara, 541-595.
  • Kaze, C.R., Djobo, J.N.Y., Nana, A., Tchakoute, H.K., Kamseu, E., Melo, U.C., Leonelli, C., Rahier, H., 2018. Effect of Silicate Modulus On The Setting, Mechanical Strength and Microstructure of İron-Rich Aluminosilicate (Laterite) Based-Geopolymer Cured At Room Temperature. Ceramics International, 44 (17), 21442-21450.
  • Kechouane, Z., Nechnech, A., 2015. Characterization of an Expansive Clay Treated with Lime: Effect of Compaction on The Swelling Pressure. 4th International Congress in Advances in Applied Physics and Materials Science (APMAS 2014), 020057-1–020057-8.
  • Koca, C., 1996. Yüksek Performanslı Beton Üretiminde Mikrosilis, Curuf, Klinker Karışımı Çimento Kullanımı. 4. Ulusal Beton Kongresi Beton Teknolojisinde Mineral ve Kimyasal Katkılar Bildiri Kitabı, TMMOB İnşaat Mühendisleri Odası, İstanbul, 381-394.
  • Kocak, Y., 2010. A Study on the Effect of Fly Ash and Silica Fume Substituted Cement Paste and Mortars. Scientific Research and Essays, 5(9), 990-998.
  • Kristaly, F., Szabo, R., Madai, F., Debreczeni, A., Mucsi, G., 2021. Lightweight composite from fly ash geopolymer and glass foam. Journal of Sustainable Cement-Based Materials, 10 (1), 1-22.
  • Kupwade-Patil, K., Palkovic, S.D., Bumajdad, A., Soriano, C., Büyüköztürk, O., 2018. Use of Silica Fume and Natural Volcanic Ash As A Replacement to Portland Cement: Micro and Pore Structural Investigation Using NMR, XRD, FTIR and X-Ray Microtomography. Construction and Building Materials, 158, 574-590.
  • Lemougna, P.N., Wang, K.-T., Tang, Q., Cui, X.-M., 2017b. Synthesis and Characterization of Low Temperature (< 800 Oc) Ceramics From Red Mud Geopolymer Precursor. Construction and Building Materials, 131, 564-573.
  • Lin, S.Y., Wang, S.L., 2012. Advances in Simultaneous DSC–FTIR Microspectroscopy for Rapid Solid-State Chemical Stability Studies: Some Dipeptide Drugs as Examples. Adv Drug Delivery Rev, 64, 461-478.
  • Lin, B., Cerato, A.B., Madden, A.S., Elwood Madden, M.E., 2013. Effect of Fly Ash on the Behavior of Expansive Soils: Microscopic Analysis. Environmental Engineering Geoscience, 19(1), 85-94.
  • Madejova, J., Komadel, P., 2001. Baseline Studies of The Clay Minerals Society Source Clays: Infrared Methods. Clays and Clay Minerals, 49(5), 410-432.
  • Mahamedi, A., Khemissa, M., 2013. Cement Stabilization of Compacted Expansive Clay. Online j. Sci. Technol., 3(1), 33-38.
  • Mak, Y.W., Chuah, L.O., Ahmad, R., Bhat, R., 2013. Antioxidant and Antibacterial Activities of Hibiscus (Hibiscus rosa-sinensis L.) and Cassia (Senna bicapsularis L.) Flower Extracts. Journal of King Saud University Science, 25(4), 275-282.
  • Mallela, J., Quintus, H.V., Smith, K.L., 2004. Consideration of Limestabilized Layers in Mechanistic-Empirical Pavement Design. The National Lime Association, Arlington, Virginia, USA.
  • Marel, H.W.V.D., Beutelspacher, H., 1976. Atlas of Infrared Spectroscopy of Clay Minerals and Their Admixtures. Elsevier Scientific Publishing, Amsterdam.
  • Miraki, H., Shariatmadari, N., Ghadir, P., Jahandari, S., Tao, Z., Siddique, R., 2022. Clayey Soil Stabilization Using Alkali-Activated Volcanic Ash And Slag. Journal of Rock Mechanics and Geotechnical Engineering, 14(2), 576-591.
  • Murmu, A.L., Jain, A., Patel, A., 2019. Mechanical Properties of Alkali Activated Fly Ash Geopolymer Stabilized Expansive Clay. KSCE Journal of Civil Engineering, 23 (9), 3875-3888.
  • Nacamoto, K., 1970. Infrared Spectra of Inorganic and Coordinated Compound. Wiley, New York.
  • Önem, Y., 2000. Sanayi Madenleri. Kozan Ofset, Ankara.
  • Özcan, A.S., 2010. Doğal Bentonitin Karakterizasyonu ve Kurşun(II) İyonlarını Adsorpsiyon Yeteneği. Anadolu Üniversitesi BAÜ Fen Bil. Enst. Dergisi, 12(2), 85-97.
  • Puertas, F., Fernandez-Jimenez, A., 2003. Mineralogical and Microstructural Characterisation of Alkali-Activated Fly Ash/Slag Pastes. Cement & Concrete Composites, 25(3), 287-292.
  • Puertas, F., Fernandez-Jimenez, A., Blanco-Varela, M.T., 2004. Pore Solution in Alkaliactivated Slag Cement Pastes. Relation to The Composition and Structure of Calcium Silicate Hydrate. Cement And Concrete Research, 34(1), 139-148.
  • Ramadas, T., Kumar, N.D., Yesuratnam, G., 2011. Geotechnical Characteristics of Three Expansive Soils Treated With Lime and Fly Ash. International Journal of Earth Sciences and Engineering, 4(6), 46-49.
  • Saeed, K.A.H., Kassim, K.A., Yunus, N.Z.M., Nur, H., 2015. Physico-Chemical Characterization of Lime Stabilized Tropical Kaolin Clay. Jurnal Teknologi, 72(3), 83-90.
  • Tabak, A., Afsin, B., Caglar, B., Koksal, E., 2007. Characterization and Pillaring of A Turkish bentonite (Resadiye). Journal of Colloid and Interface Science, 313(1), 5-11.
  • Varast, M.J., Alvarez De Buergo, M., Fort, R., 2005. Natural Cement As The Precursor of Portland Cement: Methodology for its Identification. Cement And Concrete Research, 35(11), 2055-2065.
  • Voottipruex, P., Jamsawang, P., 2014. Characteristics of Expansive Soils Improved With Cement and Fly Ash in Northern Thailand. Geomechanics and Engineering An Int'l Journal, 6(5), 437-453.
  • Yeğinobalı, A., 2003. Silis Dumanı ve Çimento İle Betonda Kullanımı. Tçmb/Ar-Ge, Ankara, 975-8136-14-3.
  • Yıldız, K., Dorum, A., Koçak, Y., 2010. Pomza Zeolit ve Cem I Çimentosunun Minerolojik Moleküler Elektrokinetik ve Termal Uyumunun Yüksek Dayanımlı Betona Etkisinin Araştırılması. Gazi Üniv. Müh. Mim. Fak. Der., 25(4), 867-879.
  • Zhang, Q., Liu, C., Sun, Z., Hu, X., Shen, Q., Wu, J., 2012. Authentication of Edible Vegetable Oils Adulterated With Used Frying Oil by Fourier Transform Infrared Spectroscopy. Food Chem, 132, 1607-1613.
  • Wang, D., Abriak, N.E., Zentar, R., Chen, W., 2013. Effect of Lime Treatment on Geotechnical Properties of Dunkirk Sediments in France. Road Materials and Pavement Design, 14(3), 485-503.

DETERMINATION OF MOLECULAR CHANGES OCCURING IN BENTONITE STABILIZED WITH FLY ASH, SILICA FUME AND TUFF BY FOUİRER TRANSFORM INFRARED SPECTROSCOPY (FT-IR) METHOD

Yıl 2023, Cilt: 11 Sayı: 1, 94 - 112, 27.03.2023
https://doi.org/10.21923/jesd.1166834

Öz

Stabilization, which is very preferred today because it is an easily applicable and economical method, occurs because of the pozzolanic reactions occurring between the additive materials added to the clayey soil and the soil. The pozzolanic reactions cause molecular changes in the soil. The most common way to detect these changes is the Fourier Transform Infrared Spectroscopy (FT-IR) method. In this study, FT-IR studies were carried out on the samples prepared using fly ash and silica fume, acidic and basic tuffs as additives and cured for 28 days, and molecular changes after stabilization were investigated. From the analysis, a new peak was formed at 1431 cm-1, which is related to the (Ca, Mg) CO3 stretch in the sample using basic tuff. In the sample using fly ash, a new peak was determined at 1416 cm-1 wave number associated with C-S-H and C-A-S-H compounds formed because of pozzolanic reactions with the effect of CaO ratio. In the example in which silica fume and basic tuff was used together, new peaks were formed at 1363 cm-1 and 1431 cm-1 wave numbers, and these peaks were associated with the (Ca, Mg) CO3 stretching. In the example in which acidic tuff and fly ash was used, two new peaks with wave numbers of 1363 cm-1 and 1416 cm-1 were formed, associated with calcite formation in the form of C-S-H and C-A-S-H compounds. According to the results of study, the examples in which pozzolanic reactions developed best are the 10% basic tuff + 10% silica fume added sample, and 10% acidic tuff + 10% fly ash added sample.

Kaynakça

  • Akbulut, A., 1996. Bentonit. MTA Eğitim Serisi-32, Ankara.
  • Aksoy, H.S., Yılmaz, M., Akarsu, E.E., 2008. Killi Bir Zeminin Tunçbilek Uçucu Külü Kullanılarak Stabilizasyonu. Doğu Anadolu Bölgeleri Araştırmaları.
  • Al-Rawas, A.A., Hago, A.W., Al-Sarmi, H., 2005. Effect of Lime, Cement and Sarooj (Artificial Pozzolan) on The Swelling Potential of an Expansive Soil from Oman. Building & Environment, 40(5), 681-687.
  • Amiralian, S., 2013. Study on Soil Stabilisation Technique Using Lime & Fly Ash. Master Thesis, Faculty of Science and Engineering, Department of Civil Engineering, Curtin University.
  • Anon, 2010. JASCO FTIR Seminar. http://www.jasco.hu/konyvtar/FT-IR-Grundl.-Seminar.pdf.
  • Asgari, M.R., Dezfuli, A.B., Bayat, M., 2015. Experimental Study on Stabilization of a Low Plasticity Clayey Coil With Cement/Lime. Arabian Journal of Geosciences, 8(3), 1439-1452.
  • Aslan Topçuoğlu, Y., 2020. Farklı Katkı Maddelerinin Zeminlerin Mühendislik Özellikleri Üzerindeki Etkisi. Doktora Tezi, Fırat Üniversitesi, Elazığ.
  • ASTM C 618-12, 2012. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in Concrete. West Conshohocken, ASTM International. PA.
  • ASTM D698-12e2, 2012. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort. American Society for Testing and Materials .
  • Attoh-Okine, N.O., 1995. Lime Treatment of Laterite Soils and Gravels-Revisited. Constr. Build. Mater, 9(5), 283¬-287.
  • Azadegan, O., Jafari, S.H., Li, J., 2012. Compaction Characteristics and Mechanical Properties of Lime/Cement Treated Granular Soils. Electronic Journal of Geotechnical Engineering, 17, 2275-2284.
  • Bandipally, S., 2017. Characterization of Lime-Treated Soils for Assessing Short-Term Strength Behavior. Master Thesis, Geotechnical Engineering Division, Department of Civil Engineerıng, Indian Institute of Technology Madras.
  • Bilgiç, C., Bilgiç, Ş., 2018. Aapplication of Fourier Transform Infrared (FTIR) Spectroscopy to Analysis of Clays. Nevşehir Bilim ve Teknoloji Dergisi, 8(IMSMATEC Özel Sayı), 37-46.
  • Boardman, D.I., Glendinning, S., Rogers, C.D.F., 2001. Development of Stabilization and Solidification in Lime-Clay Mixes. Geotechnique, 51(6), 533-543.
  • Bukka, K., Miller, J.D., Shabtai, J., 1992. FTIR Study of Deuterated Montmorillonites: Structural Features Relevant to Pillared Clay Stability. Clays and Clay Minerals, 40, 92-102.
  • Chen, K., Wu, D., Zhang, Z., Pan, C., Shen, X., Xia, L., Zang, J., 2022. Modeling and Optimization of Fly Ash–Slag-Based Geopolymer Using Response Surface Method And its Application in Soft Soil Stabilization. Construction and Building Materials, 315.
  • Cheng, Y., Wang, S., Li, J., Huang, X., Li, C., Wu, J., 2018. Engineering and Mineralogical Properties of Stabilized Expansive Soil Compositing Lime and Natural Pozzolans. Construction and Building Materials, 187, 1031-1038.
  • Clayden, N., Esposito, S., Aronne, A., Pernice, P., 1999. Solid state 27Al NMR and FTIR study of lanthanum aluminosilicate glasses. J. Non-Cryst. Solids 258 (1-3), 11-19.
  • Criado, M., Fernández-Jiménez, A., Palomo, A., 2007. Alkali activation of fly ash: effect of the SiO2/Na2O ratio: Part I: FTIR study. Microporous Mesoporous Mater. 106 (1-3), 180-191.
  • Cuisinier, O., Auriol, J.C., Le Borgne, T., Deneele, D., 2011. Microstructure and Hydraulic Conductivity of a Compacted Lime-Treated Soil. Engineering Geology, 123(3), 187-193.
  • Çakatay, U., Aydın, S., Belce A., 2010. Biyokimyada Temel Hesaplamalar, (s. 1-64). Kitapta Bölüm/Araştırma Kitabı, İstanbul Üniversitesi Basım ve Yayınevi Müdürlüğü.
  • Dorum, A., Yılmaz, B., Koçak, Y., Uçar, A., 2010. Puzolan Yüzey Özelliklerinin Çimento Harçlarının Fiziksel ve Mekanik Özelliklerine Etkisi. e-Journal of New World Sciences Academy, 5(2), 448-462.
  • Eisazadeh, A., Kassim, K.A., Nur, H., 2012. Solid-State NMR and FTIR Studies of Lime Stabilized Montmorillonitic and Lateritic Clays. Applied Clay Science, 67-68, 5-10.
  • Etim, R.K., Attah, I.C., Ekpo, D.U., Usanga, I.N., 2021. Evaluation on Stabilization Role of Lime and Cement in Expansive Black Clay–Oyster Shell Ash Composite. Transportation Infrastructure Geotechnology.
  • Genç, S., 2009. Şişen Zeminler ve Bentonit-Kaolin Karışımlarının Şişme Özellikleri. Yüksek Lisans Tezi, İstanbul Üniversitesi, İstanbul.
  • Gomes, C.E.M., Ferreira, O.P., 2005. Analyses of Microstructural Proporties of Va/Veova Copolymer Modified Cement Pastes. Polimeros: Ciencia E Tecnologia, 15 (3), 193-198.
  • Gomes, C.E.M., Ferreira, O.P., Fernandes, M.R., 2005. Influence of Vinyl Acetate-Versatic Vinylester Copolymer on The Microstructural Characteristics of Cement Pastes. Material Research, 8 (1), 51-56.
  • Goodarzi, A.R. Goodarzi, S.H., Akbari, H.R., 2015. Assessing Geo-Mechanical and Micro-Structural Performance of Modified Expansive Clayey Soil by Silica Fume As İndustrial Waste. Iranian Journal of Science And Technology-Transactions of Civil Engineering, 39(C2), 333-350.
  • Govin, A., Peschard, A., Guyonnet, R., 2006. Modification of Cement Hydration at Early Ages by Natural and Heated Wood. Cement Concrete Composites, 28 (1), 12-20.
  • Gunasekaran, S., Anbalagan, G., 2007. Spectroscopic Characterization of Natural Calcite Minerals. Spectrochimica Acta (Part A), 68, 656-664.
  • Gündüz, T., 1990. İnstrümental Analiz, (s.122,123). Bilge Yayıncılık, Ankara.
  • Hajimohammadi, A., Provis, J.L., Van Deventer, J.S.J., 2011. The Effect of Silica Availability on The Mechanism of Geopolymerisation. Cement and Concrete Research, 41(3), 210-216.
  • Harichane, K., Ghrici, M., Khebizi, W., Missoum, H., 2011. Effet de la combinaison de la chaux et de la pouzzolane naturelle sur la durabilité des sols argileux. Proceedings of 29th meeting of AUGC-Tlemcen, Algeria, 65-75.
  • Hossain, K.M.A., Mol, L., 2011. Some Engineering Properties of Stabilized Clayey Soils Incorporating Natural Pozzolans and Industrial Wastes. Construction and Building Materials, 25(8), 3495-3501.
  • Karakaya, M.Ç., 2006. Kil Minerallerinin Özellikleri ve Tanımlama Yöntemleri. Bizim Büro Basımevi, Ankara, 541-595.
  • Kaze, C.R., Djobo, J.N.Y., Nana, A., Tchakoute, H.K., Kamseu, E., Melo, U.C., Leonelli, C., Rahier, H., 2018. Effect of Silicate Modulus On The Setting, Mechanical Strength and Microstructure of İron-Rich Aluminosilicate (Laterite) Based-Geopolymer Cured At Room Temperature. Ceramics International, 44 (17), 21442-21450.
  • Kechouane, Z., Nechnech, A., 2015. Characterization of an Expansive Clay Treated with Lime: Effect of Compaction on The Swelling Pressure. 4th International Congress in Advances in Applied Physics and Materials Science (APMAS 2014), 020057-1–020057-8.
  • Koca, C., 1996. Yüksek Performanslı Beton Üretiminde Mikrosilis, Curuf, Klinker Karışımı Çimento Kullanımı. 4. Ulusal Beton Kongresi Beton Teknolojisinde Mineral ve Kimyasal Katkılar Bildiri Kitabı, TMMOB İnşaat Mühendisleri Odası, İstanbul, 381-394.
  • Kocak, Y., 2010. A Study on the Effect of Fly Ash and Silica Fume Substituted Cement Paste and Mortars. Scientific Research and Essays, 5(9), 990-998.
  • Kristaly, F., Szabo, R., Madai, F., Debreczeni, A., Mucsi, G., 2021. Lightweight composite from fly ash geopolymer and glass foam. Journal of Sustainable Cement-Based Materials, 10 (1), 1-22.
  • Kupwade-Patil, K., Palkovic, S.D., Bumajdad, A., Soriano, C., Büyüköztürk, O., 2018. Use of Silica Fume and Natural Volcanic Ash As A Replacement to Portland Cement: Micro and Pore Structural Investigation Using NMR, XRD, FTIR and X-Ray Microtomography. Construction and Building Materials, 158, 574-590.
  • Lemougna, P.N., Wang, K.-T., Tang, Q., Cui, X.-M., 2017b. Synthesis and Characterization of Low Temperature (< 800 Oc) Ceramics From Red Mud Geopolymer Precursor. Construction and Building Materials, 131, 564-573.
  • Lin, S.Y., Wang, S.L., 2012. Advances in Simultaneous DSC–FTIR Microspectroscopy for Rapid Solid-State Chemical Stability Studies: Some Dipeptide Drugs as Examples. Adv Drug Delivery Rev, 64, 461-478.
  • Lin, B., Cerato, A.B., Madden, A.S., Elwood Madden, M.E., 2013. Effect of Fly Ash on the Behavior of Expansive Soils: Microscopic Analysis. Environmental Engineering Geoscience, 19(1), 85-94.
  • Madejova, J., Komadel, P., 2001. Baseline Studies of The Clay Minerals Society Source Clays: Infrared Methods. Clays and Clay Minerals, 49(5), 410-432.
  • Mahamedi, A., Khemissa, M., 2013. Cement Stabilization of Compacted Expansive Clay. Online j. Sci. Technol., 3(1), 33-38.
  • Mak, Y.W., Chuah, L.O., Ahmad, R., Bhat, R., 2013. Antioxidant and Antibacterial Activities of Hibiscus (Hibiscus rosa-sinensis L.) and Cassia (Senna bicapsularis L.) Flower Extracts. Journal of King Saud University Science, 25(4), 275-282.
  • Mallela, J., Quintus, H.V., Smith, K.L., 2004. Consideration of Limestabilized Layers in Mechanistic-Empirical Pavement Design. The National Lime Association, Arlington, Virginia, USA.
  • Marel, H.W.V.D., Beutelspacher, H., 1976. Atlas of Infrared Spectroscopy of Clay Minerals and Their Admixtures. Elsevier Scientific Publishing, Amsterdam.
  • Miraki, H., Shariatmadari, N., Ghadir, P., Jahandari, S., Tao, Z., Siddique, R., 2022. Clayey Soil Stabilization Using Alkali-Activated Volcanic Ash And Slag. Journal of Rock Mechanics and Geotechnical Engineering, 14(2), 576-591.
  • Murmu, A.L., Jain, A., Patel, A., 2019. Mechanical Properties of Alkali Activated Fly Ash Geopolymer Stabilized Expansive Clay. KSCE Journal of Civil Engineering, 23 (9), 3875-3888.
  • Nacamoto, K., 1970. Infrared Spectra of Inorganic and Coordinated Compound. Wiley, New York.
  • Önem, Y., 2000. Sanayi Madenleri. Kozan Ofset, Ankara.
  • Özcan, A.S., 2010. Doğal Bentonitin Karakterizasyonu ve Kurşun(II) İyonlarını Adsorpsiyon Yeteneği. Anadolu Üniversitesi BAÜ Fen Bil. Enst. Dergisi, 12(2), 85-97.
  • Puertas, F., Fernandez-Jimenez, A., 2003. Mineralogical and Microstructural Characterisation of Alkali-Activated Fly Ash/Slag Pastes. Cement & Concrete Composites, 25(3), 287-292.
  • Puertas, F., Fernandez-Jimenez, A., Blanco-Varela, M.T., 2004. Pore Solution in Alkaliactivated Slag Cement Pastes. Relation to The Composition and Structure of Calcium Silicate Hydrate. Cement And Concrete Research, 34(1), 139-148.
  • Ramadas, T., Kumar, N.D., Yesuratnam, G., 2011. Geotechnical Characteristics of Three Expansive Soils Treated With Lime and Fly Ash. International Journal of Earth Sciences and Engineering, 4(6), 46-49.
  • Saeed, K.A.H., Kassim, K.A., Yunus, N.Z.M., Nur, H., 2015. Physico-Chemical Characterization of Lime Stabilized Tropical Kaolin Clay. Jurnal Teknologi, 72(3), 83-90.
  • Tabak, A., Afsin, B., Caglar, B., Koksal, E., 2007. Characterization and Pillaring of A Turkish bentonite (Resadiye). Journal of Colloid and Interface Science, 313(1), 5-11.
  • Varast, M.J., Alvarez De Buergo, M., Fort, R., 2005. Natural Cement As The Precursor of Portland Cement: Methodology for its Identification. Cement And Concrete Research, 35(11), 2055-2065.
  • Voottipruex, P., Jamsawang, P., 2014. Characteristics of Expansive Soils Improved With Cement and Fly Ash in Northern Thailand. Geomechanics and Engineering An Int'l Journal, 6(5), 437-453.
  • Yeğinobalı, A., 2003. Silis Dumanı ve Çimento İle Betonda Kullanımı. Tçmb/Ar-Ge, Ankara, 975-8136-14-3.
  • Yıldız, K., Dorum, A., Koçak, Y., 2010. Pomza Zeolit ve Cem I Çimentosunun Minerolojik Moleküler Elektrokinetik ve Termal Uyumunun Yüksek Dayanımlı Betona Etkisinin Araştırılması. Gazi Üniv. Müh. Mim. Fak. Der., 25(4), 867-879.
  • Zhang, Q., Liu, C., Sun, Z., Hu, X., Shen, Q., Wu, J., 2012. Authentication of Edible Vegetable Oils Adulterated With Used Frying Oil by Fourier Transform Infrared Spectroscopy. Food Chem, 132, 1607-1613.
  • Wang, D., Abriak, N.E., Zentar, R., Chen, W., 2013. Effect of Lime Treatment on Geotechnical Properties of Dunkirk Sediments in France. Road Materials and Pavement Design, 14(3), 485-503.
Toplam 65 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Yasemin Aslan Topçuoğlu 0000-0002-3135-5926

Zülfü Gürocak 0000-0002-1049-8346

Yayımlanma Tarihi 27 Mart 2023
Gönderilme Tarihi 25 Ağustos 2022
Kabul Tarihi 21 Ekim 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 1

Kaynak Göster

APA Aslan Topçuoğlu, Y., & Gürocak, Z. (2023). UÇUCU KÜL, SİLİS DUMANI VE TÜF İLE STABİLİZE EDİLMİŞ BENTONİTTE MEYDANA GELEN MOLEKÜLER DEĞİŞİMLERİN FOURİER DÖNÜŞÜMLÜ KIZILÖTESİ SPEKTROSKOPİSİ (FT-IR) YÖNTEMİ İLE BELİRLENMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 11(1), 94-112. https://doi.org/10.21923/jesd.1166834