Araştırma Makalesi
BibTex RIS Kaynak Göster

INVESTIGATION OF THE INPUT ENERGY OF THE SDOFS USING REAL GROUND MOTION RECORD ACCORDING TO TBEC 2018

Yıl 2023, Cilt: 11 Sayı: 3, 1018 - 1029, 28.09.2023
https://doi.org/10.21923/jesd.1184845

Öz

Determination of the input energy for the structures is the most basic subject of energy-based earthquake engineering. The input energy of the structure during earthquakes motion constitutes the sum of hysteretic energy, kinetic energy, elastic deformation energy and damping energy. In energy-based design, the energy demand obtained by earthquake motion should be lower than the energy consumption capacity of the building. Thus, it is important to realistically determine the input energy of the structure. In this study, nonlinear dynamic analyses of single degree-of-freedom (SDOF) systems were performed in order to evaluate the effect of different design spectra on the input energy demands of the structures. For this purpose, a total of 72 different SDOF systems were considered. In order to examine the effect of different spectra, 4 different locations in Turkey and 3 different local soil classes compatible with these locations were taken into account. 4 different sets of ground motion records were obtained, compatible with each of the 12 different design spectra, and a total of 48 sets of ground motion records were used for nonlinear dynamic analysis. In the analysis results, the mean of the maximum input energy demands and the scattering of these demands were compared. When the analysis results are examined, considering the design spectrum at different levels, it has been observed that the input energy demands of the structures also change. In addition, the mean of the maximum input energy demands obtained from different acceleration sets compatible with the same design spectrum is close to each other. Finally, it has been seen that the scattering of the input energy demands within the set is high, while the scattering between the sets is low.

Kaynakça

  • Akbaş, B., Shen, J., 2003. Depreme dayanıklı yapı tasarımı ve enerji kavramı, Türkiye İnşaat Mühendisleri Odası Teknik Dergi, 14(2), 2877-2901.
  • Akkar, S., Sandıkkaya, M.A., Senyurt, M., Sisi, A.A., Ay, B.Ö., Traversa, P., Douglas, J., Cotton, F., Luzi, L., Hernandez, B., Godey, S., 2014. Reference database for seismic ground-motion in Europe (RESORCE). Bulletin of Earthquake Engineering, 12(1), 311-339.
  • Ambraseys, N.N., Douglas, J., Rinaldis, D., Berge-Thierry, C., Suhadolc, P., Costa, G., Sigbjornsson, R., Smit, P., 2004. Dissemination of European strong-motion data. CD-ROM Collection, Engineering and Physical Sciences Research Council, 1-80.
  • Ancheta, T.D., Darragh, R.B., Stewart, J.P., Seyhan, E., Silva, W.J., Chiou, B.S.J., Wooddell, K.E., Graves, R.B., Kottke, A.R., Boore, D.M., Kishida, T., Donahue, J.L., 2014. NGA-West2 database. Earthquake Spectra, 30(3), 989–1005.
  • ATC-40., 1996. Seismic evaluation and retrofit of concrete buildings, 1–2. Applied Technology Council, California.
  • Alıcı, F.S., Sucuoğlu, H., 2016. Prediction of input energy spectrum: attenuation models and velocity spectrum scaling. Earthquake Engineering and Structural Dynamics, 45(13), 2137-2161.
  • Alici, F.S., Sucuğolu, H., 2018. Elastic and inelastic near-fault input energy spectra, Earthquake Spectra, 34(2), 611-637.
  • Chopra, A.K., 1995. Dynamics of structures = Theory and applications to earthquake engineering. Prentice-Hall, New York.
  • Clough, R.W., Johnston, S.B., 1966. Effect of stiffness degradation on earthquake ductility requirements. Japan Earthquake Engineering Symposium, 1, 227–232.
  • Dedeoğlu, İ.E., Calayır, Y., 2021. Farklı tasarım spektrumlarına göre ölçeklenmiş deprem kayıtları etkisindeki TSD sistemlerin yapısal tepkilerinin ve giren enerjilerinin değerlendirilmesi, Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 12(2), 411-430.
  • Dilmac, H., Ulutas, H., Tekeli, H., & Demir, F. 2018. The investigation of seismic performance of existing RC buildings with and without infill walls. Computers and Concrete, 22(5), 439–447.
  • Dindar, A.A., 2009. Enerji esaslı yöntemlerle betonarme kolonların analizi ve tasarımı, Doktora Tezi, Boğaziçi Üniversitesi Fen Bilimleri Enstitüsü, Türkiye.
  • Dindar, A.A., Yalçın, C., Yüksel, E., Özkaynak, H., Büyüköztürk, O., 2015. Development of earthquake energy demand spectra, Earthquake Spectra, 31(3), 1667–1689.
  • Fajfar, P., Vidic, T., Fischinger, M., 1991. On the energy input into structures, Pacific Conference on Earthquake Engineering, 1, 81-92.
  • FEMA-440., 2005. Improvement of nonlinear static seismic analysis procedures. Federal Emergency Management Agency, Washington DC.
  • Hachem, M., 2004. BISPEC: Interactive Software for the Computation of Unidirectional and Bidirectional Nonlinear Earthquake Spectra, Structures, 1-12.
  • Kayhan, A.H., Demir, A., 2016. Statistical evaluation of drift demands of RC frames using code-compatible real ground motion record sets. Structural Engineering and Mechanics, 60(6):953–977.
  • Kayhan, A.H., Demir, A., Palanci, M., 2018. Statistical evaluation of maximum displacement demands of SDOF systems by code compatible nonlinear time history analysis. Soil Dynamics and Earthquake Engineering, 115:513–530.
  • Kayhan, A.H., Demir, A., Palanci, M., 2022. Multi-functional solution model for spectrum compatible ground motion record selection using stochastic harmony search algorithm. Bulletin of Earthquake Engineering, 20, 6407–6440.
  • Kumbasaroglu, A., 2020. Effect of anchor bars on seismic behavior of infilled walled frames. KSCE Journal of Civil Engineering, 24(10), 2980-2992.
  • Merter, O., 2014. Çok katlı betonarme çerçeve sistemlerin deprem etkileri altında göçme güvenliğinin enerji esaslı yöntemle belirlenmesi, Doktora Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, Türkiye.
  • Merter, O., Uçar, T., Düzgün, M., 2017. Determination of earthquake safety of RC frame structures using an energy-based approach, Structural Engineering and Mechanics, 19(6), 689-699.
  • Merter, O., 2019. An investigation on the maximum earthquake input energy for elastic SDOF systems. Earthquakes and Structures,16(4), 487-499.
  • Palanci, M., Kayhan, A.H., Demir, A., 2018. A statistical assessment on global drift ratio demands of mid-rise RC buildings using code-compatible real ground motion records. Bulletin of Earthquake Engineering, 16(11), 5453–5488.
  • Palanci, M., Demir, A., Kayhan, A.H., 2021. The investigation of displacement demands of single degree of freedom models using real earthquake records compatible with TBEC-2018. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 251-263.
  • Priestley, M.J.N., Calvi, G.M., Kowalsky, M.J., 2007. Displacement Based Seismic Design of Structures. IUSS Press, Pavia, Italy.
  • SEAOC Vision 2000 Committee., 1995. Performance-based seismic engineering, Report Prepared by Structural Engineers Association of California, Sacramento, California, (1995).
  • TBDY., 2018. Türkiye Bina Deprem Yönetmeliği, T.C. İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı, Ankara.
  • Uçar, T., Merter, O., 2018. Effect of design spectral shape on inelastic response of RC framessubjected to spectrum matched ground motions, Structural Engineering and Mechanics, 69(3), 293-306.
  • Uçar, T., 2020. Computing input energy response of MDOF systems to actual ground motions based on modal contributions. Earthquakes and Structures, 18(2), 263-273.

TBDY 2018 İLE UYUMLU GERÇEK İVME KAYITLARI KULLANILARAK TSD SİSTEMLERE GİREN ENERJİNİN İNCELENMESİ

Yıl 2023, Cilt: 11 Sayı: 3, 1018 - 1029, 28.09.2023
https://doi.org/10.21923/jesd.1184845

Öz

Yapılara giren enerjinin belirlenmesi enerji esaslı deprem mühendisliğinin en temel konusudur. Yer hareketi esnasında yapıya giren enerji histeretik enerji, kinetik enerji, elastik şekil değiştirme enerjisi ve sönümleme enerjisinin toplamını oluşturmaktadır. Enerjiye dayalı tasarımda yer hareketi ile elde edilen enerji talebinin yapının enerji tüketme kapasitesinden daha düşük olması gerekmektedir. Bu yüzden yapıya giren enerjinin gerçekçi olarak belirlenmesi önem taşımaktadır. Bu çalışmada, farklı tasarım spektrumlarının sisteme giren enerji taleplerine etkisinin değerlendirilmesi amacıyla, tek serbestlik dereceli (TSD) sistemlerin doğrusal olmayan dinamik analizleri yapılmıştır. Bu amaçla toplamda 72 farklı TSD sistem dikkate alınmıştır. Farklı spektrumların etkisini incelemek amacıyla Türkiye’de bulunan 4 farklı konum ve bu konumlar ile uyumlu 3 farklı yerel zemin sınıfı dikkate alınmıştır. 12 farklı tasarım spektrumunun her biri ile uyumlu 4 farklı ivme kaydı seti elde edilmiş, toplamda ise 48 adet ivme kaydı seti doğrusal olmayan dinamik analizler için kullanılmıştır. Analiz sonuçlarında maksimum giren enerji taleplerinin ortalaması ile bu taleplere ait saçılımlar karşılaştırılmıştır. Analiz sonuçları incelendiğinde; farklı düzeyde tasarım spektrumu dikkate alındığında sisteme giren enerji taleplerinin de değiştiği görülmüştür. Ayrıca aynı tasarım spektrumu ile uyumlu farklı ivme setlerinden elde edilen maksimum giren enerji taleplerinin ortalaması birbirlerine yakındır. Son olarak, giren enerji taleplerinin set içerisindeki saçılımlarının yüksek olduğu ve buna karşılık setler arası saçılımın ise düşük olduğu görülmüştür.

Kaynakça

  • Akbaş, B., Shen, J., 2003. Depreme dayanıklı yapı tasarımı ve enerji kavramı, Türkiye İnşaat Mühendisleri Odası Teknik Dergi, 14(2), 2877-2901.
  • Akkar, S., Sandıkkaya, M.A., Senyurt, M., Sisi, A.A., Ay, B.Ö., Traversa, P., Douglas, J., Cotton, F., Luzi, L., Hernandez, B., Godey, S., 2014. Reference database for seismic ground-motion in Europe (RESORCE). Bulletin of Earthquake Engineering, 12(1), 311-339.
  • Ambraseys, N.N., Douglas, J., Rinaldis, D., Berge-Thierry, C., Suhadolc, P., Costa, G., Sigbjornsson, R., Smit, P., 2004. Dissemination of European strong-motion data. CD-ROM Collection, Engineering and Physical Sciences Research Council, 1-80.
  • Ancheta, T.D., Darragh, R.B., Stewart, J.P., Seyhan, E., Silva, W.J., Chiou, B.S.J., Wooddell, K.E., Graves, R.B., Kottke, A.R., Boore, D.M., Kishida, T., Donahue, J.L., 2014. NGA-West2 database. Earthquake Spectra, 30(3), 989–1005.
  • ATC-40., 1996. Seismic evaluation and retrofit of concrete buildings, 1–2. Applied Technology Council, California.
  • Alıcı, F.S., Sucuoğlu, H., 2016. Prediction of input energy spectrum: attenuation models and velocity spectrum scaling. Earthquake Engineering and Structural Dynamics, 45(13), 2137-2161.
  • Alici, F.S., Sucuğolu, H., 2018. Elastic and inelastic near-fault input energy spectra, Earthquake Spectra, 34(2), 611-637.
  • Chopra, A.K., 1995. Dynamics of structures = Theory and applications to earthquake engineering. Prentice-Hall, New York.
  • Clough, R.W., Johnston, S.B., 1966. Effect of stiffness degradation on earthquake ductility requirements. Japan Earthquake Engineering Symposium, 1, 227–232.
  • Dedeoğlu, İ.E., Calayır, Y., 2021. Farklı tasarım spektrumlarına göre ölçeklenmiş deprem kayıtları etkisindeki TSD sistemlerin yapısal tepkilerinin ve giren enerjilerinin değerlendirilmesi, Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 12(2), 411-430.
  • Dilmac, H., Ulutas, H., Tekeli, H., & Demir, F. 2018. The investigation of seismic performance of existing RC buildings with and without infill walls. Computers and Concrete, 22(5), 439–447.
  • Dindar, A.A., 2009. Enerji esaslı yöntemlerle betonarme kolonların analizi ve tasarımı, Doktora Tezi, Boğaziçi Üniversitesi Fen Bilimleri Enstitüsü, Türkiye.
  • Dindar, A.A., Yalçın, C., Yüksel, E., Özkaynak, H., Büyüköztürk, O., 2015. Development of earthquake energy demand spectra, Earthquake Spectra, 31(3), 1667–1689.
  • Fajfar, P., Vidic, T., Fischinger, M., 1991. On the energy input into structures, Pacific Conference on Earthquake Engineering, 1, 81-92.
  • FEMA-440., 2005. Improvement of nonlinear static seismic analysis procedures. Federal Emergency Management Agency, Washington DC.
  • Hachem, M., 2004. BISPEC: Interactive Software for the Computation of Unidirectional and Bidirectional Nonlinear Earthquake Spectra, Structures, 1-12.
  • Kayhan, A.H., Demir, A., 2016. Statistical evaluation of drift demands of RC frames using code-compatible real ground motion record sets. Structural Engineering and Mechanics, 60(6):953–977.
  • Kayhan, A.H., Demir, A., Palanci, M., 2018. Statistical evaluation of maximum displacement demands of SDOF systems by code compatible nonlinear time history analysis. Soil Dynamics and Earthquake Engineering, 115:513–530.
  • Kayhan, A.H., Demir, A., Palanci, M., 2022. Multi-functional solution model for spectrum compatible ground motion record selection using stochastic harmony search algorithm. Bulletin of Earthquake Engineering, 20, 6407–6440.
  • Kumbasaroglu, A., 2020. Effect of anchor bars on seismic behavior of infilled walled frames. KSCE Journal of Civil Engineering, 24(10), 2980-2992.
  • Merter, O., 2014. Çok katlı betonarme çerçeve sistemlerin deprem etkileri altında göçme güvenliğinin enerji esaslı yöntemle belirlenmesi, Doktora Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, Türkiye.
  • Merter, O., Uçar, T., Düzgün, M., 2017. Determination of earthquake safety of RC frame structures using an energy-based approach, Structural Engineering and Mechanics, 19(6), 689-699.
  • Merter, O., 2019. An investigation on the maximum earthquake input energy for elastic SDOF systems. Earthquakes and Structures,16(4), 487-499.
  • Palanci, M., Kayhan, A.H., Demir, A., 2018. A statistical assessment on global drift ratio demands of mid-rise RC buildings using code-compatible real ground motion records. Bulletin of Earthquake Engineering, 16(11), 5453–5488.
  • Palanci, M., Demir, A., Kayhan, A.H., 2021. The investigation of displacement demands of single degree of freedom models using real earthquake records compatible with TBEC-2018. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 251-263.
  • Priestley, M.J.N., Calvi, G.M., Kowalsky, M.J., 2007. Displacement Based Seismic Design of Structures. IUSS Press, Pavia, Italy.
  • SEAOC Vision 2000 Committee., 1995. Performance-based seismic engineering, Report Prepared by Structural Engineers Association of California, Sacramento, California, (1995).
  • TBDY., 2018. Türkiye Bina Deprem Yönetmeliği, T.C. İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı, Ankara.
  • Uçar, T., Merter, O., 2018. Effect of design spectral shape on inelastic response of RC framessubjected to spectrum matched ground motions, Structural Engineering and Mechanics, 69(3), 293-306.
  • Uçar, T., 2020. Computing input energy response of MDOF systems to actual ground motions based on modal contributions. Earthquakes and Structures, 18(2), 263-273.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Ahmet Demir 0000-0002-3526-0764

Yayımlanma Tarihi 28 Eylül 2023
Gönderilme Tarihi 5 Ekim 2022
Kabul Tarihi 11 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 3

Kaynak Göster

APA Demir, A. (2023). TBDY 2018 İLE UYUMLU GERÇEK İVME KAYITLARI KULLANILARAK TSD SİSTEMLERE GİREN ENERJİNİN İNCELENMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 11(3), 1018-1029. https://doi.org/10.21923/jesd.1184845