Araştırma Makalesi
BibTex RIS Kaynak Göster

ÇELİK MALZEME SATIN ALMA SÜREÇLERİNDE VERİ MADENCİLİĞİ VE MAKİNE ÖĞRENMESİ UYGULAMALARI

Yıl 2023, Cilt: 11 Sayı: 3, 1174 - 1189, 28.09.2023
https://doi.org/10.21923/jesd.1221635

Öz

Firmaların varlıklarını sürdürebilmeleri için, belli karlılık hedeflerini tutturmaları gerekmektedir. Firmalarda karlılık hedeflerine doğrudan etki eden faaliyetlerden biri de satın almadır. Değişen dünya koşullarında satın alma süreçlerinin kritik malzeme grupları için çevik ve stratejik olması gerekmektedir. Bu çalışmada, çelik malzeme ürün grubunda stratejik satın alma kararlarının verilmesi ve karlılığın arttırılması için veri madenciliği ve makine öğrenmesi yöntemleri ortaya konmuştur. Veri setinde bulunan gürültülü veriler tespit edilerek veri madenciliği teknikleri ile temizlenmiştir. Temizlenen veri seti makine öğrenmesi tekniklerinden kümeleme analizlerinden hiyerarşik kümeleme ve K-ortalamalar yöntemleri kullanılarak analiz edilmiştir. Bu analizde ideal küme sayısı ve bulunan ideal küme sayısının doğrulaması yapılmış olup stratejik açıdan en önemli proje ortaya konmuştur. Seçilen projede yer alan malzeme detayları teknik olarak incelenip, tüketim, kalınlık ve çelik malzemenin haddeleme tipi dikkate alınarak karlılık getirmesi beklenen satın alma stratejileri ortaya konmuştur. Bu çalışmada önerilen analizler ile satın alma süreçlerinde, çalışan kaynaklı hataların satın alma stratejileri geliştirme süreçlerindeki etkileri azaltılmış, satın alma çalışanlarının uzun zaman harcayarak yapacağı analizler, veri analizi ve makine öğrenmesi gibi endüstri mühendisliği yöntemleri ile gerçekleştirilmiştir.

Kaynakça

  • Al-Omary, A. Y., & Jamil, M. S. (2005). A new approach of clustering based machine-learning algorithm. Knowledge Based Systems, 19, 248-258.
  • Asilkan, Ö. (2008). Veri Madenciliği Kullanılarak İkinci El Otomobil Pazarında Fiyat Tahmini [Akdeniz Üniversitesi].
  • Babaoğlu, A. (2015). Veri Madenciliği Yöntemleri ve Bir Uygulama. Selçuk Üniversites. 117.
  • Cui, M. (2020). Introduction to the K-Means Clustering Algorithm Based on the Elbow Method.
  • Erbudak, A. E. (2022). Veri Madenciliği Ve Makine Öğrenimi İle Döviz Kuru Tahmini Uygulaması. 97.
  • Erpolat, S. (2012). Otomobil Yetkili Servislerinde Birliktelik Kurallarının Belirlenmesinde Apriori ve FP-Growth Algoritmalarının Karşılaştırılması. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 12(1 (151-166)).
  • Henderson, A. R. (2006). Testing experimental data for univariate normality. Clinica Chimica Acta, 366(1-2)
  • Jeong, J., Park, S., & Lee, C. (2016). Comprehensive comparison of normality tests: Empirical study using many different types of data. Journal of the Korean Data and Information Science Society, 27(5), 1399-1412.
  • Kameshwaran, & Malarvizhi. (2014). Survey on Clustering Techniques in Data Mining. 5, 5.
  • Kirgiz, A. (2021). Lüks Otomotiv Sektöründe Satın Alma Kararını Etkileyen Faktörler. R&S - Research Studies Anatolia Journal.
  • Köylüoğlu, A. S., Acar, Ö. E., & İnan, Ü. S. E. (2018). Tüketicilerin Otomobil Satın Alma Davranışlarına Etki Eden Faktörlerin Belirlenmesi: Akademisyenlere Yönelik Bir Uygulama. Selçuk Üniversitesi Sosyal Bilimler Meslek Yüksekokulu Dergisi, 21(2), 251-273.
  • Liebchen, G., Twala, B., Shepperd, M., Cartwright, M., & Stephens, M. (2007). Filtering, Robust Filtering, Polishing: Techniques for Addressing Quality in Software Data. First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007), 99-106.
  • Liu, B., Xia, Y., & Yu, P. S. (2000). Clustering Through Decision Tree Construction. Conference Of Information And Knowledge Management . 10.
  • Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.
  • Özgür, A. (2002). Supervısed And Unsupervısed Machıne Learnıng Technıques For Text Document Categorızatıon.
  • Öztuna, D., Elhan, A. H., & Tüccar, E. (t.y.). Investigation of Four Different Normality Tests in Terms of Type 1 Error Rate and Power under Different Distributions. Turk J Med Sci.
  • Patel, P., Sivaiah, B., & Patel, R. (2022). Approaches for finding Optimal Number of Clusters using K-Means and Agglomerative Hierarchical Clustering Techniques. 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP), 1-6.
  • Russom, P. 2011. Big data analytics. TDWI Best Practices Report, 9/14/2011. https://tdwi.org/research/2011/09/best-practices-report-q4-big-data-analytics.aspx?tc=page0&tc=assetpg&m=1
  • Saputra, D. M., Saputra, D., & Oswari, L. D. (2019). Effect of Distance Metrics in Determining K-Value in KMeans Clustering Using Elbow and Silhouette Method. Advances in Intelligent Systems Research, Proceedings of the Sriwijaya International Conference on Information Technology and Its Applications (SICONIAN 2019)(172).
  • Safaei, A.S., Heidarpoor, F., Paydar, M.M., 2018. Group purchasing organization design: a clustering approach. Comput. Appl. Math. 37, 2065–2093. https://doi.org/10.1007/s40314-017-0439-8
  • Savaş, S., Topaloğlu, N., & Yilmaz, M. (2012). Veri Madenciliği Ve Türkiye’deki Uygulama Örnekleri. 23.
  • Shobha, N., & Asha, T. (2017). Monitoring weather based meteorological data: Clustering approach for analysis. 2017 International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), 75-81.
  • Tiwari, S. , H.M. Wee, and Y. Daryanto. 2018. Big data analytics in supply chain management between 2010 and 2016: Insights to industries. Computers and Industrial Engineering 115: 319-330. https://doi:10.1016/j.cie.2017.11.017
  • Verlinden, B., J.R. Duflou, P. Collin, and D. Cattrysse. 2008. Cost estimation for sheet metal parts using multiple regression and artificial neural networks: A case study. International Journal of Production Economics 111(2): 1, 2008): 484–92. https://doi:10.1016/j.ijpe.2007.02.004
  • Qing, H., Zhang, J., Fu, D., 2021. Data Mining Technology in Business Data Analysis. J. Phys. Conf. Ser. 1852, 022045. https://doi.org/10.1088/1742-6596/1852/2/022045
  • Wang, X., & Xu, Y. (2019). An improved index for clustering validation based on Silhouette index and Calinski-Harabasz index. IOP Conference Series: Materials Science and Engineering, 569(5), 052024.
  • Zhao, C., Johnsson, M., He, M., 2017. Data Mining with Clustering Algorithms to Reduce Packaging Costs: A Case Study: Data mining approaches to reduce package costs: a case study. Packag. Technol. Sci. 30, 173–193. https://doi.org/10.1002/pts.2286

DATA MINING AND MACHINE LEARNING APPLICATIONS IN STEEL MATERIALS PURCHASING

Yıl 2023, Cilt: 11 Sayı: 3, 1174 - 1189, 28.09.2023
https://doi.org/10.21923/jesd.1221635

Öz

Companies have to meet certain profitability targets to ensure their survival. Purchasing is one of the key activities that directly affect company profitability. Purchasing processes for critical material groups need to be agile and strategic in a changing world. This study presents data mining and machine learning methods for making strategic purchasing decisions and increasing profitability in the steel materials product group. The dataset used in the study includes steel materials features such as consumption, width, length, cut type, thickness, quality and product group. Data mining techniques were used to identify and clean up noisy data in the dataset. Hierarchical clustering and K-means clustering methods were used to analyze the cleaned data set. The cleaned dataset was analyzed using hierarchical clustering and k-means clustering methods and the ideal number of clusters was determined and validated to identify the most strategically important project. The material details of the selected project have been technically analyzed and the purchasing strategies that are expected to bring profitability have been proposed, considering the consumption, thickness and rolling type of the steel material. This study provides an industry-specific perspective on the focused topic and sector in the steel materials product group. By using data mining and machine learning techniques to identify relationships in the steel materials product dataset, the study provides a different perspective that emphasizes the strategic dimension of purchasing decisions. The analyses proposed in this study have reduced the impact of human error in purchasing processes on the development of purchasing strategies, and time-consuming analysis that would normally be carried out by purchasing staff has been replaced by methods such as data mining and machine learning.

Kaynakça

  • Al-Omary, A. Y., & Jamil, M. S. (2005). A new approach of clustering based machine-learning algorithm. Knowledge Based Systems, 19, 248-258.
  • Asilkan, Ö. (2008). Veri Madenciliği Kullanılarak İkinci El Otomobil Pazarında Fiyat Tahmini [Akdeniz Üniversitesi].
  • Babaoğlu, A. (2015). Veri Madenciliği Yöntemleri ve Bir Uygulama. Selçuk Üniversites. 117.
  • Cui, M. (2020). Introduction to the K-Means Clustering Algorithm Based on the Elbow Method.
  • Erbudak, A. E. (2022). Veri Madenciliği Ve Makine Öğrenimi İle Döviz Kuru Tahmini Uygulaması. 97.
  • Erpolat, S. (2012). Otomobil Yetkili Servislerinde Birliktelik Kurallarının Belirlenmesinde Apriori ve FP-Growth Algoritmalarının Karşılaştırılması. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 12(1 (151-166)).
  • Henderson, A. R. (2006). Testing experimental data for univariate normality. Clinica Chimica Acta, 366(1-2)
  • Jeong, J., Park, S., & Lee, C. (2016). Comprehensive comparison of normality tests: Empirical study using many different types of data. Journal of the Korean Data and Information Science Society, 27(5), 1399-1412.
  • Kameshwaran, & Malarvizhi. (2014). Survey on Clustering Techniques in Data Mining. 5, 5.
  • Kirgiz, A. (2021). Lüks Otomotiv Sektöründe Satın Alma Kararını Etkileyen Faktörler. R&S - Research Studies Anatolia Journal.
  • Köylüoğlu, A. S., Acar, Ö. E., & İnan, Ü. S. E. (2018). Tüketicilerin Otomobil Satın Alma Davranışlarına Etki Eden Faktörlerin Belirlenmesi: Akademisyenlere Yönelik Bir Uygulama. Selçuk Üniversitesi Sosyal Bilimler Meslek Yüksekokulu Dergisi, 21(2), 251-273.
  • Liebchen, G., Twala, B., Shepperd, M., Cartwright, M., & Stephens, M. (2007). Filtering, Robust Filtering, Polishing: Techniques for Addressing Quality in Software Data. First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007), 99-106.
  • Liu, B., Xia, Y., & Yu, P. S. (2000). Clustering Through Decision Tree Construction. Conference Of Information And Knowledge Management . 10.
  • Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.
  • Özgür, A. (2002). Supervısed And Unsupervısed Machıne Learnıng Technıques For Text Document Categorızatıon.
  • Öztuna, D., Elhan, A. H., & Tüccar, E. (t.y.). Investigation of Four Different Normality Tests in Terms of Type 1 Error Rate and Power under Different Distributions. Turk J Med Sci.
  • Patel, P., Sivaiah, B., & Patel, R. (2022). Approaches for finding Optimal Number of Clusters using K-Means and Agglomerative Hierarchical Clustering Techniques. 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP), 1-6.
  • Russom, P. 2011. Big data analytics. TDWI Best Practices Report, 9/14/2011. https://tdwi.org/research/2011/09/best-practices-report-q4-big-data-analytics.aspx?tc=page0&tc=assetpg&m=1
  • Saputra, D. M., Saputra, D., & Oswari, L. D. (2019). Effect of Distance Metrics in Determining K-Value in KMeans Clustering Using Elbow and Silhouette Method. Advances in Intelligent Systems Research, Proceedings of the Sriwijaya International Conference on Information Technology and Its Applications (SICONIAN 2019)(172).
  • Safaei, A.S., Heidarpoor, F., Paydar, M.M., 2018. Group purchasing organization design: a clustering approach. Comput. Appl. Math. 37, 2065–2093. https://doi.org/10.1007/s40314-017-0439-8
  • Savaş, S., Topaloğlu, N., & Yilmaz, M. (2012). Veri Madenciliği Ve Türkiye’deki Uygulama Örnekleri. 23.
  • Shobha, N., & Asha, T. (2017). Monitoring weather based meteorological data: Clustering approach for analysis. 2017 International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), 75-81.
  • Tiwari, S. , H.M. Wee, and Y. Daryanto. 2018. Big data analytics in supply chain management between 2010 and 2016: Insights to industries. Computers and Industrial Engineering 115: 319-330. https://doi:10.1016/j.cie.2017.11.017
  • Verlinden, B., J.R. Duflou, P. Collin, and D. Cattrysse. 2008. Cost estimation for sheet metal parts using multiple regression and artificial neural networks: A case study. International Journal of Production Economics 111(2): 1, 2008): 484–92. https://doi:10.1016/j.ijpe.2007.02.004
  • Qing, H., Zhang, J., Fu, D., 2021. Data Mining Technology in Business Data Analysis. J. Phys. Conf. Ser. 1852, 022045. https://doi.org/10.1088/1742-6596/1852/2/022045
  • Wang, X., & Xu, Y. (2019). An improved index for clustering validation based on Silhouette index and Calinski-Harabasz index. IOP Conference Series: Materials Science and Engineering, 569(5), 052024.
  • Zhao, C., Johnsson, M., He, M., 2017. Data Mining with Clustering Algorithms to Reduce Packaging Costs: A Case Study: Data mining approaches to reduce package costs: a case study. Packag. Technol. Sci. 30, 173–193. https://doi.org/10.1002/pts.2286
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Endüstri Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Seray Mirasçı 0000-0003-4654-6474

Aslı Aksoy 0000-0002-2971-2701

Yayımlanma Tarihi 28 Eylül 2023
Gönderilme Tarihi 20 Aralık 2022
Kabul Tarihi 3 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 3

Kaynak Göster

APA Mirasçı, S., & Aksoy, A. (2023). ÇELİK MALZEME SATIN ALMA SÜREÇLERİNDE VERİ MADENCİLİĞİ VE MAKİNE ÖĞRENMESİ UYGULAMALARI. Mühendislik Bilimleri Ve Tasarım Dergisi, 11(3), 1174-1189. https://doi.org/10.21923/jesd.1221635