DESIGN AND APPLICATION OF IoT BASED WEATHER STATION FOR HIGH VOLTAGE LABORATORIES
Yıl 2023,
Cilt: 11 Sayı: 3, 1190 - 1201, 28.09.2023
Celal Fadıl Kumru
,
Muzaffer Samed Vural
Öz
This study presents the design and implementation of an internet of things (IoT) based weather station for high voltage laboratories using the Raspberry Pi 4 Model B and two BME680 sensors. The weather station calculates the relative air density and humidity correction coefficients using the temperature, pressure, and relative humidity data obtained from the sensors. The study investigates the effect of the constant and real-time calculation of these coefficients on the measurement of AC, DC and lightning breakdown voltage using spherical electrodes. Measurements were performed within a laboratory setting for a period of 12 hours, and the obtained results were subsequently compared. The findings reveal that the real time calculation of the correction coefficients leads to a reduction in measurement errors. The study also includes the development of a web-based user interface using HTML and CSS, which is hosted on the Raspberry Pi 4 using the Flask web framework. This interface allows users to access the weather station data from any device with a web browser and provides real-time monitoring of the current coefficients, as well as the capability to calculate actual parameters online.
Destekleyen Kurum
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)
Proje Numarası
1919B012110062
Teşekkür
This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) within the scope of project 2209-A, 1919B012110062.
Kaynakça
- Bruce, F. M. (1947). Calibration of uniform-field spark-gaps for high-voltage measurement at power frequencies. Journal of the Institution of Electrical Engineers - Part II: Power Engineering, 94(38), 138–149.
- Citterio, M., Van As, D., Ahlstrøm, A. P., Andersen, M. L., Andersen, S. B., Box, J. E., Charalampidis, C., Colgan, W. T., Fausto, R. S., Nielsen, S., & Veicherts, M. (2015). Automatic weather stations for basic and applied glaciological research. Geological Survey of Denmark and Greenland Bulletin, 33(JUNE), 69–72.
- Hauschild, W., & Lemke, E. (2018). High-Voltage test and measuring techniques. In High-Voltage Test and Measuring Techniques.
- Holländer, H. M., Wang, Z., Assefa, K. A., & Woodbury, A. D. (2016). Improved Recharge Estimation from Portable, Low-Cost Weather Stations. Groundwater, 54(2), 243–254.
- Iswanto, Megantoro, P., & Pramudita, B. A. (2020). IoT-based weather station with python user interface for measurement technique ofeducational purpose. AIP Conference Proceedings, 2296.
- Jayasuriya, Y. P., Elvitigala, C. S., Wamakulasooriya, K., & Sudantha, B. H. (2018). Low Cost and IoT Based Greenhouse with Climate Monitoring and Controlling System for Tropical Countries. 2018 International Conference on System Science and Engineering, ICSSE 2018.
- Math, R. K., & Dharwadkar, N. V. (2017). A wireless sensor network based low cost and energy efficient frame work for precision agriculture. 2017 International Conference on Nascent Technologies in Engineering, ICNTE 2017 - Proceedings, 0–5.
- Purnima, P., & Reddy, S. R. N. (2012). Design of Remote Monitoring and Control System with Automatic Irrigation System using GSM-Bluetooth. International Journal of Computer Applications, 47(12), 6–13.
- Savic, T., & Radonjic, M. (2016). One approach to weather station design based on Raspberry Pi platform. 2015 23rd Telecommunications Forum, TELFOR 2015, 623–626.
- Singh, D. K., Jerath, H., & Raja, P. (2020). Low cost IoT enabled weather station. Proceedings of International Conference on Computation, Automation and Knowledge Management, ICCAKM 2020, 31–37.
- Sulaiman, A., Dan, M., Alam, S., & Garden, A. S. (2019). An IoT-based Smart Garden with Weather Station System. 2019 IEEE 9th Symposium on Computer Applications & Industrial Electronics (ISCAIE), 38–43.
- Susmitha, P., & Sowya Bala, G. (2014). Design and Implementation of Weather Monitoring and Controlling System. International Journal of Computer Applications, 97(3), 19–22.
YÜKSEK GERİLİM LABORATUVARLARI İÇİN IoT TABANLI HAVA İSTASYONU TASARIMI VE UYGULAMASI
Yıl 2023,
Cilt: 11 Sayı: 3, 1190 - 1201, 28.09.2023
Celal Fadıl Kumru
,
Muzaffer Samed Vural
Öz
Bu çalışma, Raspberry Pi 4 Model B ve iki adet BME680 sensör kullanılarak yüksek gerilim laboratuvarları için nesnelerin interneti (IoT) tabanlı bir hava istasyonunun tasarımını ve uygulamasını sunmaktadır. Hava istasyonu, sensörlerden elde edilen sıcaklık, basınç ve bağıl nem verilerini kullanarak bağıl hava yoğunluğunu ve nem düzeltme katsayılarını hesaplamaktadır. Çalışma, bu katsayıların sabit ve gerçek zamanlı hesaplanmasının, küresel elektrotlar kullanılarak ölçülen AC, DC ve yıldırım delinme gerilimi üzerindeki etkisini araştırmaktadır. Laboratuvar ortamında 12 saat boyunca ölçümler gerçekleştirilmiş ve sonrasında sonuçlar karşılaştırılmıştır. Bulgular, düzeltme katsayılarının anlık hesaplanmasının ölçme hatalarını önemli ölçüde azalttığını göstermektedir. Çalışma ayrıca Flask web çerçevesi kullanılarak Raspberry Pi 4 üzerinde barındırılan HTML ve CSS kullanılarak web tabanlı bir kullanıcı ara yüzünün geliştirilmesini de içermektedir. Bu ara yüz, kullanıcıların bir web tarayıcısı ile herhangi bir cihazdan hava istasyonu verilerine erişmesine olanak tanımakta ve mevcut katsayıların gerçek zamanlı izlenmesinin yanı sıra gerçek parametreleri çevrimiçi olarak hesaplama imkanı sağlamaktadır.
Proje Numarası
1919B012110062
Kaynakça
- Bruce, F. M. (1947). Calibration of uniform-field spark-gaps for high-voltage measurement at power frequencies. Journal of the Institution of Electrical Engineers - Part II: Power Engineering, 94(38), 138–149.
- Citterio, M., Van As, D., Ahlstrøm, A. P., Andersen, M. L., Andersen, S. B., Box, J. E., Charalampidis, C., Colgan, W. T., Fausto, R. S., Nielsen, S., & Veicherts, M. (2015). Automatic weather stations for basic and applied glaciological research. Geological Survey of Denmark and Greenland Bulletin, 33(JUNE), 69–72.
- Hauschild, W., & Lemke, E. (2018). High-Voltage test and measuring techniques. In High-Voltage Test and Measuring Techniques.
- Holländer, H. M., Wang, Z., Assefa, K. A., & Woodbury, A. D. (2016). Improved Recharge Estimation from Portable, Low-Cost Weather Stations. Groundwater, 54(2), 243–254.
- Iswanto, Megantoro, P., & Pramudita, B. A. (2020). IoT-based weather station with python user interface for measurement technique ofeducational purpose. AIP Conference Proceedings, 2296.
- Jayasuriya, Y. P., Elvitigala, C. S., Wamakulasooriya, K., & Sudantha, B. H. (2018). Low Cost and IoT Based Greenhouse with Climate Monitoring and Controlling System for Tropical Countries. 2018 International Conference on System Science and Engineering, ICSSE 2018.
- Math, R. K., & Dharwadkar, N. V. (2017). A wireless sensor network based low cost and energy efficient frame work for precision agriculture. 2017 International Conference on Nascent Technologies in Engineering, ICNTE 2017 - Proceedings, 0–5.
- Purnima, P., & Reddy, S. R. N. (2012). Design of Remote Monitoring and Control System with Automatic Irrigation System using GSM-Bluetooth. International Journal of Computer Applications, 47(12), 6–13.
- Savic, T., & Radonjic, M. (2016). One approach to weather station design based on Raspberry Pi platform. 2015 23rd Telecommunications Forum, TELFOR 2015, 623–626.
- Singh, D. K., Jerath, H., & Raja, P. (2020). Low cost IoT enabled weather station. Proceedings of International Conference on Computation, Automation and Knowledge Management, ICCAKM 2020, 31–37.
- Sulaiman, A., Dan, M., Alam, S., & Garden, A. S. (2019). An IoT-based Smart Garden with Weather Station System. 2019 IEEE 9th Symposium on Computer Applications & Industrial Electronics (ISCAIE), 38–43.
- Susmitha, P., & Sowya Bala, G. (2014). Design and Implementation of Weather Monitoring and Controlling System. International Journal of Computer Applications, 97(3), 19–22.