Araştırma Makalesi
BibTex RIS Kaynak Göster

NUMERICAL ANALYSIS OF THERMAL PERFORMANCE IN A CIRCULAR DUCT WITH DIFFERENT TURBULATORS

Yıl 2024, Cilt: 12 Sayı: 1, 1 - 15, 25.03.2024
https://doi.org/10.21923/jesd.1201753

Öz

In this study, the thermal performance of circular cross-section duct flows with different turbulators was numerically analyzed. The simulations were solved with the Computational Fluid Dynamics (CFD) based Fluent program. In the study, seven turbulator structures consisting of vertical and inclined baffles were used. These turbulators were placed in the center of the duct and the duct surfaces containing the turbulators were maintained at constant temperature (Tw=350K) conditions. Nusselt number (Nu), friction factor (f), and thermal performance factor (TPF) were calculated in two different Reynolds numbers (Re=5000 and Re=10000). Numerical solutions were compared with previous study results and correlations. To observe the effects of turbulators on flow and heat transfer, flow and temperature contours were obtained inside the duct. The study was also compared with the smooth duct flow. The findings showed that the turbulators added in the duct improved the heat transfer and the Nu increased 1.38 times compared to the duct without turbulator. In addition, the heat transfer increased with increasing the duct inlet velocity. The highest heat transfer was found to be Nu=27.17 in the case of Duct 8 at Re=10000 and the highest TPF was obtained to be TPF=1.08 at Re=5000 in the Duct 8.

Kaynakça

  • Ajarostaghi, S.S.M., Zaboli, M., Javadi, H., Badenes, B., Urchueguia, J.F., 2022. A Review of Recent Passive Heat Transfer Enhancement Methods. Energies, 15, 986. https://doi.org/10.3390/en15030986.
  • Ajeel, R.K., Sopian, K., Zulkifli, R., 2021a. Thermal-Hydraulic Performance and Design Parameters in a Curved-Corrugated Channel with L-Shaped Baffles and Nanofluid. Journal of Energy Storage, 34, 101996.
  • Ajeel, R.K., Sopian, K., Zulkifli, R., 2021b. A Novel Curved-Corrugated Channel Model: Thermal-Hydraulic Performance and Design Parameters with Nanofluid. International Communications in Heat Mass Transfer, 120, 105037.
  • Akcay, S. 2021. Investigation of Thermo-Hydraulic Performance of Nanofluids in a Zigzag Channel with Baffles. Adiyaman University Engineering Sciences Journal, 15, 525-534.
  • Akcay, S., 2022a. Numerical Analysis of Heat Transfer Improvement for Pulsating Flow in a Periodic Corrugated Channel with Discrete V-Type Winglets. International Communications in Heat Mass Transfer, 134, 105991.
  • Akcay, S., 2022b. İçerisinde Dik Bölmeler Bulunan Trapez bir Kanalda Bölme Yüksekliğinin Akış ve Isı Transferine Etkisinin İncelenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 11 (2), 479-490.
  • Akcay, S., 2023a. Numerical Analysis of Hydraulic and Thermal Performance of Al2O3-Water Nanofluid in a Zigzag Channel with Central Winglets. Gazi University Journal of Science, 36 (1), 383-397.
  • Akcay, S., 2023b. Numerical Study of Turbulent Heat Transfer Process in Different Wavy Channels with Solid and Perforated Baffles, Heat Transfer Research, 54 (18), 53-82.
  • Akcay, S., Akdag, U., 2018. Parametric Investigation of Effect on Heat Transfer of Pulsating Flow of Nanofluids in a Tube Using Circular Rings. Pamukkale University Journal of Engineering Sciences, 24 (4), 597-604.
  • Akdag, U., Akcay, S., Demiral, D., 2014. Heat Transfer Enhancement with Laminar Pulsating Nanofluid Flow in a Wavy Channel. International Communications in Heat Mass Transfer, 59, 17–23.
  • Alam, T., Saini, R.P., Saini, J.S., 2014. Use of Turbulators for Heat Transfer Augmentation in an Air Duct–A Review. Renewable Energy, 62, 689-715.
  • Alfellag, M.A., Ahmed, H.E., Jehad, M.G., Farhan, A.A., 2022. The Hydrothermal Performance Enhancement Techniques of Corrugated Channels: A Review. Journal of Thermal Analysis and Calorimetry, 147, 10177-10206.
  • ANSYS Inc., 2010. ANSYS Fluent User Guide & Theory Guide- Release 6.3, USA.
  • Choudhary, T., Sahu, M.K., Shende, V., Kumar, A., 2022. Computational Analysis of a Heat Transfer Characteristic of a Wavy and Corrugated Channel. Material Today: Proceedings, 56, 263-273.
  • El Habet, M.A., Ahmed, S.A., Saleh, M.A., 2021. Thermal/Hydraulic Characteristics of a Rectangular Channel with Inline/Staggered Perforated Baffles. International Communications in Heat Mass Transfer, 128, 105591.
  • El Habet, M.A., Ahmed, S.A., Saleh, M.A., 2022. The Effect of Using Staggered and Partially Tilted Perforated Baffles on Heat Transfer and Flow Characteristics in a Rectangular Channel. International Journal of Thermal Sciences, 174, 107422.
  • Feng, C-N., Liang, C-H., Li, Z-X., 2022. Friction Factor and Heat Transfer Evaluation of Cross-Corrugated Triangular Flow Channels with Trapezoidal Baffles. Energy & Buildings, 257, 111816,
  • Hassani, S.M., Khoshvaght-Aliabadi, M., Feizabadi, A., Rehman, S., Alimoradi, A., 2022. Experimental and Numerical Analysis of Curved Turbulators in Different Arrangements Through a Rectangular Channel. Experimental Heat Transfer, 35 (1), 22-44.
  • Inan, A.T., Koten, H., Kartal, M.K., 2022. Experimental Comparison and CFD Analysis of Conventional Shell and Tube Heat Exchanger with New Design Geometry at Different Baffle Intervals, Numerical Heat Transfer, Part A: Applications, DOI:10.1080/10407782.2022.2101801.
  • Khan, M., Shuja, S.Z., Yilbas, B.S., Al-Qahtani, H., 2022. A Case Study on Innovative Design and Assessment of a Microchannel Heat Sink with Various Turbulators Arrangements. Case Studies in Thermal Engineering, 31, 101816.
  • Krishnan, E.N., Ramin, H., Guruabalan, A., Simonson, C.J., 2021. Experimental Investigation on Thermo-Hydraulic Performance of Triangular Cross-Corrugated Flow Passages. International Communications in Heat and Mass Transfer, 122, 105160.
  • Kumar, R., Kumar, A., Chauhan, R., Sethi, M., 2016. Heat Transfer Enhancement in Solar Air Channel with Broken Multiple V-Type Baffle. Case Studies Thermal Engineering, 8, 187–197.
  • Kurtulmus, N., Sahin, B., 2019. A Review of Hydrodynamics and Heat Transfer Through Corrugated Channels. International Communications in Heat and Mass Transfer, 108, 104307,
  • Li, Z-X., Sung, S-Q., Wang, C., Liang, C-H., Zeng, S., Zhong, T., Hud, W-P., Feng, C-N., 2022. The Effect of Trapezoidal Baffles on Heat and Flow Characteristics of a Cross-Corrugated Triangular Duct. Case Studies in Thermal Engineering, 33, 101903.
  • Mehta, S.K., Pati, S., Ahmed, S., Bhattacharyya, P., Bordoloi, J.J., 2022. Analysis of Thermo-Hydraulic and Entropy Generation Characteristics for Flow Through Ribbed-Wavy Channel. International Journal of Numerical Methods for Heat & Fluid Flow, 32 (5), 1618-1642.
  • Menni, Y., A.J. Chamkha, M. Ghazvini, M.H. Ahmadi, H. Ameur, A. Issakhov, and M. Inc, Enhancement of the Turbulent Convective Heat Transfer in Channels Through the Baffling Technique and Oil/Multiwalled Carbon Nanotube Nanofluids. Numerical Heat Transfer, Part A: Applications, 2021. 79(4): p. 311-351.
  • Menni, Y., M. Ghazvini, H. Ameur, M.H. Ahmadi, M. Sharifpur, M. Sadeghzadeh, 2020. Numerical Calculations of the Thermal-Aerodynamic Characteristics in a Solar Duct with Multiple V-Baffles. Engineering Application of Computational Fluid Mechanics, 14(1), 1173–1197.
  • Modi, J. A., Rathod, M. K., 2019. Comparative Study of Heat Transfer Enhancement and Pressure Drop for Fin-and-Circular Tube Compact Heat Exchangers with Sinusoidal Wavy and Elliptical Curved Rectangular Winglet Vortex Generator. International Journal of Heat and Mass Transfer, 141, 310- 326.
  • Mohammed, H.A., Al-Shamani, A.N., Sheriff, J.M., 2012. Thermal and Hydraulic Characteristics of Turbulent Nanofluids Flow in a Rib-Groove Channel. International Communications in Heat Mass Transfer, 39, 1584-1594.
  • Nakhchi, M.E., Hatami, M., Rahmati, M., 2021. Experimental Investigation of Performance Improvement of Double-Pipe Heat Exchangers with Novel Perforated Elliptic Turbulators. International Journal of Thermal Science, 168, 107057.
  • Promvonge, P., Promthaisong, P., Skullong, S., 2020. Experimental and Numerical Heat Transfer Study of Turbulent Tube Flow Through Discrete V-Winglets, International Journal of Heat and Mass Transfer, 151, 119351.
  • Promvonge, P., Tamna, S., Pimsarn, M., Thianpong, C., 2015. Thermal Characterization in a Circular Tube Fitted with Inclined Horseshoe Baffles. Applied Thermal Engineering, 75, 1147–1155.
  • Sahel, D., H. Ameur, R. Benzeguir, Y. Kamla, Enhancement of Heat Transfer in a Rectangular Channel with Perforated Baffles. Applied Thermal Engineering, 2016. 101: p. 156–164.
  • Salhi, J.E., Zarrouk, T., Hmidi, N., Salhi, M., Salhi, N., Chennaif, M., 2022. Three-Dimensional Numerical Analysis of the Impact of the Orientation of Partially Inclined Baffles on the Combined Mass and Heat Transfer by a Turbulent Convective Airflow. International Journal of Energy and Environmental Engineering. https://doi.org/10.1007/s40095-022-00505-5.
  • Salhi, J.E., Zarrouk, T., Salhi, N., 2021. Numerical Study of the Thermo-Energy of a Tubular Heat Exchanger with Longitudinal Baffles. Materials Today: Proceedings, 45, 7306–7313.
  • Skullong, S., Promvonge, P., Thianpong, C., Pimsarn, M., 2016. Thermal Performance in Solar Air Heater Channel with Combined Wavy-Groove and Perforated-Delta Wing Vortex Generators. Applied Thermal Engineering, 100, 611–620.
  • Sriromreun, P., Thianpong, C., Promvonge, P., 2012. Experimental and Numerical Study on Heat Transfer Enhancement in a Channel with Z-Shaped Baffles. International Communications in Heat and Mass Transfer, 39(7), 945–952.
  • Sun, Z., Zhang, K., Li, W., Chen, Q., Zheng, N., 2020. Investigations of the Turbulent Thermal-Hydraulic Performance in Circular Heat Exchanger Tubes with Multiple Rectangular Winglet Vortex Generators. Applied Thermal Engineering, 168, 114838.
  • Turgut, O., Kızılırmak, E., 2015. Effects of Reynolds Number, Baffle Angle, and Baffle Distance on 3-d Turbulent Flow and Heat Transfer in a Circular Pipe. Thermal Science, 19(5), 1633-1648.
  • Zhang, L., Che, D., 2011. Turbulence Models for Fluid Flow and Heat Transfer Between Cross Corrugated Plates. Numerical Heat Transfer, Part A: Applications, 60, 410–440.
  • Zontul, H., Hamzah, H., Kurtulmuş, N., Şahin, B., 2021. Investigation of Convective Heat Transfer and Flow Hydrodynamics in Rectangular Grooved Channels. International Communications in Heat and Mass Transfer, 126, 105366.

FARKLI TÜRBÜLATÖRLERE SAHİP DAİRESEL BİR KANALDA TERMAL PERFORMANSIN SAYISAL ANALİZİ

Yıl 2024, Cilt: 12 Sayı: 1, 1 - 15, 25.03.2024
https://doi.org/10.21923/jesd.1201753

Öz

Bu çalışmada, içerisinde farklı türbülatörlere sahip dairesel kesitli kanal akışlarının termal performansı sayısal olarak analiz edilmiştir. Simülasyonlar, Hesaplamalı Akışkanlar Dinamiği (HAD) tabanlı Fluent programı ile çözülmüştür. Çalışmada, dik ve eğik bölmelerden oluşan yedi farklı türbülatör yapısı kullanılmıştır. Bu türbülatörler kanalın merkezine yerleştirilmiş ve türbülatörleri içeren kanal dış yüzeyleri sabit sıcaklık (Tw=350K) şartlarında korunmuştur. İki farklı Reynolds sayısı (Re=5000 ve Re=10000) için Nusselt sayısı (Nu), sürtünme faktörü (f) ve termal performans faktörü (TPF) hesaplanmıştır. Sayısal çözümler, önceki çalışma sonuçları ve ampirik bağıntılar ile karşılaştırılmıştır. Türbülatörlerin akış ve ısı transferi üzerindeki etkilerini gözlemleyebilmek için kanal içinde akış ve sıcaklık görüntüleri elde edilmiştir. Yapılan çalışma, aynı zamanda türbülatörsüz kanal akışı ile karşılaştırılmıştır. Elde edilen bulgular, kanal içine eklenen türbülatörlerin ısı transferini iyileştirdiğini ve türbülatörsüz kanala göre Nu 1,38 kat arttığını göstermiştir. Ayrıca kanal giriş hızının artması ile ısı transferi artmıştır. En yüksek ısı transferi Re=10000’de Kanal 8 durumunda Nu=27,17 olarak bulunmuş ve en yüksek TPF Re=5000’de Kanal 8’de TPF=1,08 olarak elde edilmiştir.

Kaynakça

  • Ajarostaghi, S.S.M., Zaboli, M., Javadi, H., Badenes, B., Urchueguia, J.F., 2022. A Review of Recent Passive Heat Transfer Enhancement Methods. Energies, 15, 986. https://doi.org/10.3390/en15030986.
  • Ajeel, R.K., Sopian, K., Zulkifli, R., 2021a. Thermal-Hydraulic Performance and Design Parameters in a Curved-Corrugated Channel with L-Shaped Baffles and Nanofluid. Journal of Energy Storage, 34, 101996.
  • Ajeel, R.K., Sopian, K., Zulkifli, R., 2021b. A Novel Curved-Corrugated Channel Model: Thermal-Hydraulic Performance and Design Parameters with Nanofluid. International Communications in Heat Mass Transfer, 120, 105037.
  • Akcay, S. 2021. Investigation of Thermo-Hydraulic Performance of Nanofluids in a Zigzag Channel with Baffles. Adiyaman University Engineering Sciences Journal, 15, 525-534.
  • Akcay, S., 2022a. Numerical Analysis of Heat Transfer Improvement for Pulsating Flow in a Periodic Corrugated Channel with Discrete V-Type Winglets. International Communications in Heat Mass Transfer, 134, 105991.
  • Akcay, S., 2022b. İçerisinde Dik Bölmeler Bulunan Trapez bir Kanalda Bölme Yüksekliğinin Akış ve Isı Transferine Etkisinin İncelenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 11 (2), 479-490.
  • Akcay, S., 2023a. Numerical Analysis of Hydraulic and Thermal Performance of Al2O3-Water Nanofluid in a Zigzag Channel with Central Winglets. Gazi University Journal of Science, 36 (1), 383-397.
  • Akcay, S., 2023b. Numerical Study of Turbulent Heat Transfer Process in Different Wavy Channels with Solid and Perforated Baffles, Heat Transfer Research, 54 (18), 53-82.
  • Akcay, S., Akdag, U., 2018. Parametric Investigation of Effect on Heat Transfer of Pulsating Flow of Nanofluids in a Tube Using Circular Rings. Pamukkale University Journal of Engineering Sciences, 24 (4), 597-604.
  • Akdag, U., Akcay, S., Demiral, D., 2014. Heat Transfer Enhancement with Laminar Pulsating Nanofluid Flow in a Wavy Channel. International Communications in Heat Mass Transfer, 59, 17–23.
  • Alam, T., Saini, R.P., Saini, J.S., 2014. Use of Turbulators for Heat Transfer Augmentation in an Air Duct–A Review. Renewable Energy, 62, 689-715.
  • Alfellag, M.A., Ahmed, H.E., Jehad, M.G., Farhan, A.A., 2022. The Hydrothermal Performance Enhancement Techniques of Corrugated Channels: A Review. Journal of Thermal Analysis and Calorimetry, 147, 10177-10206.
  • ANSYS Inc., 2010. ANSYS Fluent User Guide & Theory Guide- Release 6.3, USA.
  • Choudhary, T., Sahu, M.K., Shende, V., Kumar, A., 2022. Computational Analysis of a Heat Transfer Characteristic of a Wavy and Corrugated Channel. Material Today: Proceedings, 56, 263-273.
  • El Habet, M.A., Ahmed, S.A., Saleh, M.A., 2021. Thermal/Hydraulic Characteristics of a Rectangular Channel with Inline/Staggered Perforated Baffles. International Communications in Heat Mass Transfer, 128, 105591.
  • El Habet, M.A., Ahmed, S.A., Saleh, M.A., 2022. The Effect of Using Staggered and Partially Tilted Perforated Baffles on Heat Transfer and Flow Characteristics in a Rectangular Channel. International Journal of Thermal Sciences, 174, 107422.
  • Feng, C-N., Liang, C-H., Li, Z-X., 2022. Friction Factor and Heat Transfer Evaluation of Cross-Corrugated Triangular Flow Channels with Trapezoidal Baffles. Energy & Buildings, 257, 111816,
  • Hassani, S.M., Khoshvaght-Aliabadi, M., Feizabadi, A., Rehman, S., Alimoradi, A., 2022. Experimental and Numerical Analysis of Curved Turbulators in Different Arrangements Through a Rectangular Channel. Experimental Heat Transfer, 35 (1), 22-44.
  • Inan, A.T., Koten, H., Kartal, M.K., 2022. Experimental Comparison and CFD Analysis of Conventional Shell and Tube Heat Exchanger with New Design Geometry at Different Baffle Intervals, Numerical Heat Transfer, Part A: Applications, DOI:10.1080/10407782.2022.2101801.
  • Khan, M., Shuja, S.Z., Yilbas, B.S., Al-Qahtani, H., 2022. A Case Study on Innovative Design and Assessment of a Microchannel Heat Sink with Various Turbulators Arrangements. Case Studies in Thermal Engineering, 31, 101816.
  • Krishnan, E.N., Ramin, H., Guruabalan, A., Simonson, C.J., 2021. Experimental Investigation on Thermo-Hydraulic Performance of Triangular Cross-Corrugated Flow Passages. International Communications in Heat and Mass Transfer, 122, 105160.
  • Kumar, R., Kumar, A., Chauhan, R., Sethi, M., 2016. Heat Transfer Enhancement in Solar Air Channel with Broken Multiple V-Type Baffle. Case Studies Thermal Engineering, 8, 187–197.
  • Kurtulmus, N., Sahin, B., 2019. A Review of Hydrodynamics and Heat Transfer Through Corrugated Channels. International Communications in Heat and Mass Transfer, 108, 104307,
  • Li, Z-X., Sung, S-Q., Wang, C., Liang, C-H., Zeng, S., Zhong, T., Hud, W-P., Feng, C-N., 2022. The Effect of Trapezoidal Baffles on Heat and Flow Characteristics of a Cross-Corrugated Triangular Duct. Case Studies in Thermal Engineering, 33, 101903.
  • Mehta, S.K., Pati, S., Ahmed, S., Bhattacharyya, P., Bordoloi, J.J., 2022. Analysis of Thermo-Hydraulic and Entropy Generation Characteristics for Flow Through Ribbed-Wavy Channel. International Journal of Numerical Methods for Heat & Fluid Flow, 32 (5), 1618-1642.
  • Menni, Y., A.J. Chamkha, M. Ghazvini, M.H. Ahmadi, H. Ameur, A. Issakhov, and M. Inc, Enhancement of the Turbulent Convective Heat Transfer in Channels Through the Baffling Technique and Oil/Multiwalled Carbon Nanotube Nanofluids. Numerical Heat Transfer, Part A: Applications, 2021. 79(4): p. 311-351.
  • Menni, Y., M. Ghazvini, H. Ameur, M.H. Ahmadi, M. Sharifpur, M. Sadeghzadeh, 2020. Numerical Calculations of the Thermal-Aerodynamic Characteristics in a Solar Duct with Multiple V-Baffles. Engineering Application of Computational Fluid Mechanics, 14(1), 1173–1197.
  • Modi, J. A., Rathod, M. K., 2019. Comparative Study of Heat Transfer Enhancement and Pressure Drop for Fin-and-Circular Tube Compact Heat Exchangers with Sinusoidal Wavy and Elliptical Curved Rectangular Winglet Vortex Generator. International Journal of Heat and Mass Transfer, 141, 310- 326.
  • Mohammed, H.A., Al-Shamani, A.N., Sheriff, J.M., 2012. Thermal and Hydraulic Characteristics of Turbulent Nanofluids Flow in a Rib-Groove Channel. International Communications in Heat Mass Transfer, 39, 1584-1594.
  • Nakhchi, M.E., Hatami, M., Rahmati, M., 2021. Experimental Investigation of Performance Improvement of Double-Pipe Heat Exchangers with Novel Perforated Elliptic Turbulators. International Journal of Thermal Science, 168, 107057.
  • Promvonge, P., Promthaisong, P., Skullong, S., 2020. Experimental and Numerical Heat Transfer Study of Turbulent Tube Flow Through Discrete V-Winglets, International Journal of Heat and Mass Transfer, 151, 119351.
  • Promvonge, P., Tamna, S., Pimsarn, M., Thianpong, C., 2015. Thermal Characterization in a Circular Tube Fitted with Inclined Horseshoe Baffles. Applied Thermal Engineering, 75, 1147–1155.
  • Sahel, D., H. Ameur, R. Benzeguir, Y. Kamla, Enhancement of Heat Transfer in a Rectangular Channel with Perforated Baffles. Applied Thermal Engineering, 2016. 101: p. 156–164.
  • Salhi, J.E., Zarrouk, T., Hmidi, N., Salhi, M., Salhi, N., Chennaif, M., 2022. Three-Dimensional Numerical Analysis of the Impact of the Orientation of Partially Inclined Baffles on the Combined Mass and Heat Transfer by a Turbulent Convective Airflow. International Journal of Energy and Environmental Engineering. https://doi.org/10.1007/s40095-022-00505-5.
  • Salhi, J.E., Zarrouk, T., Salhi, N., 2021. Numerical Study of the Thermo-Energy of a Tubular Heat Exchanger with Longitudinal Baffles. Materials Today: Proceedings, 45, 7306–7313.
  • Skullong, S., Promvonge, P., Thianpong, C., Pimsarn, M., 2016. Thermal Performance in Solar Air Heater Channel with Combined Wavy-Groove and Perforated-Delta Wing Vortex Generators. Applied Thermal Engineering, 100, 611–620.
  • Sriromreun, P., Thianpong, C., Promvonge, P., 2012. Experimental and Numerical Study on Heat Transfer Enhancement in a Channel with Z-Shaped Baffles. International Communications in Heat and Mass Transfer, 39(7), 945–952.
  • Sun, Z., Zhang, K., Li, W., Chen, Q., Zheng, N., 2020. Investigations of the Turbulent Thermal-Hydraulic Performance in Circular Heat Exchanger Tubes with Multiple Rectangular Winglet Vortex Generators. Applied Thermal Engineering, 168, 114838.
  • Turgut, O., Kızılırmak, E., 2015. Effects of Reynolds Number, Baffle Angle, and Baffle Distance on 3-d Turbulent Flow and Heat Transfer in a Circular Pipe. Thermal Science, 19(5), 1633-1648.
  • Zhang, L., Che, D., 2011. Turbulence Models for Fluid Flow and Heat Transfer Between Cross Corrugated Plates. Numerical Heat Transfer, Part A: Applications, 60, 410–440.
  • Zontul, H., Hamzah, H., Kurtulmuş, N., Şahin, B., 2021. Investigation of Convective Heat Transfer and Flow Hydrodynamics in Rectangular Grooved Channels. International Communications in Heat and Mass Transfer, 126, 105366.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği, Üretim ve Endüstri Mühendisliği (Diğer)
Bölüm Araştırma Makalesi \ Research Makaleler
Yazarlar

Selma Akçay 0000-0003-2654-0702

Yayımlanma Tarihi 25 Mart 2024
Gönderilme Tarihi 9 Kasım 2022
Kabul Tarihi 6 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 1

Kaynak Göster

APA Akçay, S. (2024). FARKLI TÜRBÜLATÖRLERE SAHİP DAİRESEL BİR KANALDA TERMAL PERFORMANSIN SAYISAL ANALİZİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 12(1), 1-15. https://doi.org/10.21923/jesd.1201753