Araştırma Makalesi
BibTex RIS Kaynak Göster

BİR DÖRTPERVANELİNİN PID VE BULANIK MANTIK-PID KONTROLCÜ İLE POZİSYON KONTROLÜ

Yıl 2024, Cilt: 12 Sayı: 1, 34 - 48, 25.03.2024
https://doi.org/10.21923/jesd.1223998

Öz

Bu çalışmada, bir dörtpervanelinin altı serbestlik derecesinde pozisyon kontrolü için PID tabanlı verimli kontrol sistemleri tasarlanmış ve karşılaştırılmıştır. Asıl amaç, dörtpervaneliyi üç-boyutlu uzayda istenen konuma getirmektir. İlk olarak dörtpervanelinin ulaşması istenen pozisyon belirlenmiştir. Sonra sistemin fiziksel modeli seçilmiştir ve matematiksel model, fiziksel modele göre türetilmiştir. Başlangıçta sürükleme kuvveti ve rüzgar gibi tüm dış etkiler yoksayılmıştır. Fakat, tasarlanan kontrolcülerin sağlamlığını ölçmek için çeşitli dış etkiler sisteme daha sonra uygulanmıştır.İlk olarak PID kontrolcü dörtpervaneli sistemine uygulanmıştır, ikinci olarak Bulanık Mantık-PID kontolcü kullanılmıştır. Gerekli olan yunuslama ve yuvarlama açıları bulunmuş ve kontrol kuvvetleri her iki kontrolcü ile de hesaplanmıştır. Ayrıca motorların açısal hızı ve her bir motora sağlanması gereken akım değerleri, önerilen kontrolcülerin performansı ve uygulanabilirliğini ölçmek için, hesaplanmış ve karşılaştırılmıştır. Sonuçlara göre, her iki kontrolcünün de başarılı şekilde çalıştığı gözlemlenmiştir, dörtpervaneli üç-boyutlu uzayda istenen konuma ulaşabilmiştir. Fakat, Bulanık mantık-PID kontrolcü, temel PID kontrolcüden daha hızlı ve daha az seviyede aşımla cevap vermiştir. Ayrıca, Bulanık Mantık-PID kontrolcünün dış etkilerden daha az etkilendiği ve bu değişiklikler karşısında daha hızlı toparladığı görülmüştür.

Kaynakça

  • Gibiansky, A., 2012. Quadcopter Dynamics and Simulation. https://andrew.gibiansky.com/blog/physics/quadcopter-dynamics/
  • Bouabdallah, S., Murrieri, P., Siegwart, R., 2004. Design and Control of an Indoor Micro Quadrotor. IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.
  • Bozkurt, E., Dandıl, B., Ata, F., 2020. Dört Rotorlu İnsansız Hava Aracının Kayan Kipli Denetleyici ve Geri Adımlamalı Denetleyici ile Yönelim ve Yükseklik Denetimi. Fırat Üniversitesi Müh.Bil.Dergisi.
  • Cedro, L., Wieczorkowski, K., 2019. Optimizing PID controller gains to model the performance of a quadcopter. 13th International Scientific Conference on Sustainable, Modern and Safe Transport.
  • He, Z., Long, Z., 2014. A Simple Attitude Control of Quadrotor Helicopter Based on Ziegler-Nichols Rules for Tuning PD Parameters. Hindawi Publishing Corporation The Scientific World Journal.
  • Jirinec, T., 2011. Stabilization and Control of Unmanned Quadcopter. Luleå University of Technology Department of Computer Science, Electrical and Space Engineering.
  • Li, D., 2020. Fuzzy PID Controller to control the attitude of Quadrotor UAV. Gyancity Journal of Engineering and Technology.
  • Lin, X., Wang, Y., Liu, Y., 2019. Neutral-network based robust terminal sliding-mode control of quadrotor. School of Information and Control Engineering. Qingdao University of Technology,Shandong, China.
  • Praveen, V., Pillai, A., 2016. Modeling and Simulation of Quadcopter using PID Controller. International Journal of Circuit Theory and Applications.
  • Prayitno, A., Indrawati, V., Trusulaw, I., 2017. Comparison of PID and Fuzzy Controller for Position Control of AR Drone. International Conference on Electrical Engineering, Computer Science and Informatics.
  • Rahimi, M., Hajighasemi, S., Sanaei, D., 2013. Designing and Simulation for Vertical Moving Control of UAV System using PID, LQR and Fuzzy logic. International Journal of Electrical and Computer Engineering (IJECE).
  • Reizenstein, A., 2017. Position and Trajectory Control of a Quadcopter Using PID and LQ Controllers. Department of Electrical Engineering, Linköping University.
  • Romero, L. E., Pozo, D. F., Rosales, J. A., 2016. Quadcopter stabilization by using PID controllers. Maskana, 5, 175–186.
  • Recuperado a partir de https://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana/article/view/585
  • Sabo, C., Cohen, K., 2012. Fuzzy Logic Unmanned Air Vehicle Motion Planning. Hindawi Publishing Corporation.
  • Suiçmez, E., Kutay, A., 2014. Dört Rotorlu Bir İnsansız Hava Aracının Geri Adımlama Yöntemi ile Yol Takibi Kontrolü. Havacılık ve Uzay Teknolojileri Dergisi.
  • Zouaoui, S., Mohamed, E., Kouider, B., 2018. Easy Tracking of UAV Using PID Controller. Periodica Polytechnica Transportation Engineering.

POSITION CONTROL OF A QUADCOPTER WITH PID AND FUZZY-PID CONTROLLER

Yıl 2024, Cilt: 12 Sayı: 1, 34 - 48, 25.03.2024
https://doi.org/10.21923/jesd.1223998

Öz

In this study, PID based efficient control systems are designed and compared for position control of a quadcopter in six degrees of freedom. The main goal is to get the quadcopter to the desired position in three-dimensional space. Firstly, the desired position for the quadcopter to reach is determined. Then, the physical model of the system is selected, and mathematical model is derived according to the physical model. Initially, all external disturbances like drag force and wind are neglected. However, various external disturbances are then applied to the system to measure robustness of the designed controllers. Firstly, PID controller is implemented to the quadcopter system. Secondly, Fuzzy-PID controller is used. Necessary pitch and roll angles are found and control forces are calculated by using both controllers. Also, angular velocities of the motors and current values which are needed to be supplied to each motor are calculated and compared to evaluate performance and applicability of the proposed controllers. According to the results, it is observed that both controllers worked successfully, quadcopter is able to reach the desired location in three-dimensional space. However, Fuzzy-PID controller gives faster response and smaller overshoot levels than basic PID controller. In addition, it is seen that the Fuzzy-PID controller is less affected by external disturbances, and it recovers faster against these changes.

Kaynakça

  • Gibiansky, A., 2012. Quadcopter Dynamics and Simulation. https://andrew.gibiansky.com/blog/physics/quadcopter-dynamics/
  • Bouabdallah, S., Murrieri, P., Siegwart, R., 2004. Design and Control of an Indoor Micro Quadrotor. IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.
  • Bozkurt, E., Dandıl, B., Ata, F., 2020. Dört Rotorlu İnsansız Hava Aracının Kayan Kipli Denetleyici ve Geri Adımlamalı Denetleyici ile Yönelim ve Yükseklik Denetimi. Fırat Üniversitesi Müh.Bil.Dergisi.
  • Cedro, L., Wieczorkowski, K., 2019. Optimizing PID controller gains to model the performance of a quadcopter. 13th International Scientific Conference on Sustainable, Modern and Safe Transport.
  • He, Z., Long, Z., 2014. A Simple Attitude Control of Quadrotor Helicopter Based on Ziegler-Nichols Rules for Tuning PD Parameters. Hindawi Publishing Corporation The Scientific World Journal.
  • Jirinec, T., 2011. Stabilization and Control of Unmanned Quadcopter. Luleå University of Technology Department of Computer Science, Electrical and Space Engineering.
  • Li, D., 2020. Fuzzy PID Controller to control the attitude of Quadrotor UAV. Gyancity Journal of Engineering and Technology.
  • Lin, X., Wang, Y., Liu, Y., 2019. Neutral-network based robust terminal sliding-mode control of quadrotor. School of Information and Control Engineering. Qingdao University of Technology,Shandong, China.
  • Praveen, V., Pillai, A., 2016. Modeling and Simulation of Quadcopter using PID Controller. International Journal of Circuit Theory and Applications.
  • Prayitno, A., Indrawati, V., Trusulaw, I., 2017. Comparison of PID and Fuzzy Controller for Position Control of AR Drone. International Conference on Electrical Engineering, Computer Science and Informatics.
  • Rahimi, M., Hajighasemi, S., Sanaei, D., 2013. Designing and Simulation for Vertical Moving Control of UAV System using PID, LQR and Fuzzy logic. International Journal of Electrical and Computer Engineering (IJECE).
  • Reizenstein, A., 2017. Position and Trajectory Control of a Quadcopter Using PID and LQ Controllers. Department of Electrical Engineering, Linköping University.
  • Romero, L. E., Pozo, D. F., Rosales, J. A., 2016. Quadcopter stabilization by using PID controllers. Maskana, 5, 175–186.
  • Recuperado a partir de https://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana/article/view/585
  • Sabo, C., Cohen, K., 2012. Fuzzy Logic Unmanned Air Vehicle Motion Planning. Hindawi Publishing Corporation.
  • Suiçmez, E., Kutay, A., 2014. Dört Rotorlu Bir İnsansız Hava Aracının Geri Adımlama Yöntemi ile Yol Takibi Kontrolü. Havacılık ve Uzay Teknolojileri Dergisi.
  • Zouaoui, S., Mohamed, E., Kouider, B., 2018. Easy Tracking of UAV Using PID Controller. Periodica Polytechnica Transportation Engineering.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik, Makine Mühendisliği
Bölüm Araştırma Makalesi \ Research Makaleler
Yazarlar

Ozan Polat 0000-0001-9004-3896

Aziz Sezgin 0000-0001-6861-5309

Yayımlanma Tarihi 25 Mart 2024
Gönderilme Tarihi 26 Aralık 2022
Kabul Tarihi 29 Aralık 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 1

Kaynak Göster

APA Polat, O., & Sezgin, A. (2024). POSITION CONTROL OF A QUADCOPTER WITH PID AND FUZZY-PID CONTROLLER. Mühendislik Bilimleri Ve Tasarım Dergisi, 12(1), 34-48. https://doi.org/10.21923/jesd.1223998