Araştırma Makalesi
BibTex RIS Kaynak Göster

FOTOVOLTAİK SİSTEM ENTEGRELİ ELEKTRİKLİ ARAÇ ŞARJ SİSTEMLERİNDE OPTİMUM KAPASİTENİN BELİRLENMESİ

Yıl 2024, Cilt: 12 Sayı: 3, 476 - 487, 26.09.2024
https://doi.org/10.21923/jesd.1448108

Öz

Bu çalışmada, fotovoltaik (FV) sistem entegreli ve şebekeye bağlı bir elektrikli araç şarj istasyonunda optimum FV kapasitesinin belirlenmesi için yeni bir yaklaşım ortaya konulmuştur. Gerçek ortamda FV panelin ürettiği güç değerleri, MATLAB FV modeli ve FV simülatör yardımıyla elde edilen sonuçlar ile karşılaştırılmıştır ve sonuçların birbiri ile uyumlu olduğu görülmüştür. Çalışmada 16,8 kWh kapasiteli bir elektrik araç bataryasının şarj edilmesi için gereken FV sistem kapasitesinin optimizasyonu amaçlanmıştır. Bunun için FV sistem optimum eğim ve azimut açıları belirlendikten sonra FV boyutlandırması yapılmıştır. Elektrikli araç bataryasının bir yıllık toplam enerjisinin FV sistemin bir yıllık toplam ürettiği enerji ile karşılanması amaç fonksiyonu olarak belirlenmiştir. Bu şartlar altında MATLAB modeli yardımıyla elde edilen sonuçlar 3,35 kWp’lik FV kapasitesinin bir aracın yıl boyunca ihtiyaç duyduğu enerjiyi karşılayabileceğini ortaya koymuştur. Bu çalışma, FV sistemlerin elektrikli araç şarj sistemleri için optimum kapasitenin belirlenmesinde etkili bir yöntem sunmaktadır.

Etik Beyan

Yazarlar tarafından herhangi bir çıkar çatışması beyan edilmemiştir. No conflict of interest was declared by the authors.

Destekleyen Kurum

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Proje Numarası

120E365 nolu TÜBİTAK 1001 Projesi

Teşekkür

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 120E365 nolu proje kapsamında desteklenmiştir.

Kaynakça

  • Anon., 2020. BU-1003: Electric Vehicle (EV) – Battery University. Battery University. Retrieved March 6, 2024 (www.batteryuniversity.com).
  • Arulvendhan, K., Srinivas, K. N., Rajamanickam, N., Alharbi, M., Seada, H., 2024. Hybrid Compensation Based Efficient Wireless Charging System Design with Solar Photovoltaic Interface Toward Sustainable Transportation. IEEE Access, 12, 87152-87166.
  • Ayaz, R., Nakir, I., Tanrioven, M., 2014. An Improved Matlab-Simulink Model of PV Module Considering Ambient Conditions. International Journal of Photoenergy.
  • Becherif, M., Ayad, M. Y., Hissel, D., Mkahl, R., 2011. Design and Sizing of a Stand-Alone Recharging Point for Battery Electrical Vehicles Using Photovoltaic Energy. IEEE Vehicle Power and Propulsion Conference, VPPC.
  • Bellini, A., Bifaretti, S., Iacovone, V., Cornaro, C., 2009. Simplified Model of A Photovoltaic Module. Applied Electronics.
  • Benghanem, M. 2011. Optimization of Tilt Angle for Solar Panel: Case Study for Madinah, Saudi Arabia. Applied Energy 88(4),1427–33.
  • Chen, Y., Cao, L., Wang, F., 2021. Research on Optimal Configuration Method of Devices for Integrated PV Storage and Charging Station. 5th IEEE Conference on Energy Internet and Energy System Integration: Energy Internet for Carbon Neutrality, EI2 2021 1344–48.
  • Das, S., Acharjee, P., Bhattacharya, A., 2021. Charging Scheduling of Electric Vehicle Incorporating Grid-to-Vehicle and Vehicle-to-Grid Technology Considering in Smart Grid. IEEE Transactions on Industry Applications 57(2),1688–1702.
  • Duffie, J. A., Beckman, W. A., 2013. Solar Engineering of Thermal Processes: Fourth Edition. Solar Engineering of Thermal Processes: Fourth Edition.
  • Gülkaya, B., Ateş, Y., 2021. Elektrikli Taşıtların Dağıtılmış Üretim Tabanlı Şebekeler Üzerindeki Etkilerinin Analizi Ve Çözüm Önerileri. Mühendislik Bilimleri ve Tasarım Dergisi 9(4),1174–99.
  • Güner, S., Yazici, S., 2022. Bir Güneş Enerji Sisteminin Dağıtım Sistemi Güvenilirliğine Etkilerinin İncelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi 10(2),538–49.
  • Heba, A., Gastli, A., Ben-Brahim, L., Semira, M., 2022. Planning and Optimizing Electric-Vehicle Charging Infrastructure Through System Dynamics. IEEE Access, 10, 17495–17514.
  • John, S., Vincent. G., 2021. PV Fed Electric Vehicle Charging Station with Power Backup. Asia-Pacific Power and Energy Engineering Conference, APPEEC 2021-November.
  • Li, B., Sun, H., Lou, J., Sun, K., Zhang, Z., Sun, Y., 2024. An Integration Scheme for Highway Rest Area Integrating the Distributed Photovoltaic Generation and Energy Storage. IEEE Transactions on Industry Applications, 60(1), 1083–1092.
  • Liu, B., Jordan, R., 1963. The Long-Term Average Performance of Flat-Plate Solar-Energy Collectors: With Design Data for the U.S., Its Outlying Possessions and Canada. Solar Energy 7(2),53–74.
  • Mishra, D., Singh, B., Panigrahi, B. K., 2022. Sigma-Modified Power Control and Parametric Adaptation in a Grid-Integrated PV for EV Charging Architecture. IEEE Transactions on Energy Conversion, 37(3), 1965–1976.
  • Mukherjee, J. C., Arobinda G., 2015. A Review of Charge Scheduling of Electric Vehicles in Smart Grid. IEEE Systems Journal 9(4),1541–53.
  • Muttaqi, K. M., Rahman, O., Sutanto, D., Hossain Lipu, M. S., Abdolrasol, M. G. M., Hannan, M. A., 2022. High-Frequency Ripple Injection Signals for the Effective Utilization of Residential EV Storage in Future Power Grids With Rooftop PV System. IEEE Transactions on Industry Applications, 58(5), 6655–6665.
  • Prajapati, S, and Fernandez, E., 2019. Rooftop Solar PV System for Commercial Office Buildings for EV Charging Load. 2019 IEEE 6th International Conference on Smart Instrumentation, Measurement and Application, ICSIMA 2019.
  • Rangaraju, J., Gong X., 2020. Taking Charge of Electric Vehicles-Both in the Vehicle and on the Grid.
  • Sekhar, K. S. R., Chaudhari, M. A., Khadkikar, V., 2023. Enhanced Hybrid Converter Topology for PV-Grid-EV Integration. IEEE Transactions on Energy Conversion, 38(4), 2634–2646.
  • Tamizhmani, G., Ji, L., Tang, Y., Petacci L., 2003. Photovoltaic Module Thermal/Wind Performance: Long-Term Monitoring and Model Development for Energy Rating. NCPV and Solar Program Review Meeting, NREL.
  • Yildizhan, D., Erenoğlu, A. K., Erdi̇nç, O., 2022. Elektrikli Araç Entegrasyonunun Dağıtım Sistemine Etkilerinin İncelenmesi Ve Şarj İstasyonu Altyapısının Tayin Edilmesi. Mühendislik Bilimleri ve Tasarım Dergisi 10(4),1232–42.
  • Xiao, L., Muttaqi, K. M., & Agalgaonkar, A. P., 2023. Improving Reliability of PV-Powered Highway with Electric Vehicle Charging Services. IEEE Transactions on Industry Applications, 60(2), 2002–2011.
  • Yousuf, A. K. M., Wang, Z., Paranjape, R., Tang, Y., 2023. Electric Vehicle Charging Station Infrastructure: A Comprehensive Review of Technologies, Challenges, and Mitigation Strategies. Canadian Conference on Electrical and Computer Engineering, 588–92.
  • Yüzer, E. Ö., Bozkurt, A., Barutçu, Ç., 2023. Fotovoltaik Sistem Çıkış Gücünün Yapay Sinir Ağları Ve Matlab/Simulink Modellerinin Entegrasyonu İle Belirlenmesi. Mühendislik Bilimleri ve Tasarım Dergisi 11(2),551–63.
  • Zhang, S., James, J. Q. Y., 2022. Electric Vehicle Dynamic Wireless Charging System: Optimal Placement and Vehicle-to-Grid Scheduling. IEEE Internet of Things Journal 9(8),6047–57.
  • Zhang, T., Wei C., Zhu, H., Zhigang, C., 2014. Charging Scheduling of Electric Vehicles with Local Renewable Energy under Uncertain Electric Vehicle Arrival and Grid Power Price. IEEE Transactions on Vehicular Technology 63(6),2600–2612.

DETERMINATION OF OPTIMUM SYSTEM CAPACITY IN PHOTOVOLTAIC SYSTEM INTEGRATED ELECTRIC VEHICLE CHARGING SYSTEMS

Yıl 2024, Cilt: 12 Sayı: 3, 476 - 487, 26.09.2024
https://doi.org/10.21923/jesd.1448108

Öz

In this study, a new approach is proposed for determining the optimum photovoltaic (PV) capacity in a grid-connected electric vehicle charging station with integrated PV system. The power generated by the PV panel in real environment is compared with the results obtained with the help of MATLAB PV model and PV simulator and the results are found to be compatible with each other. It is aimed to optimize the PV system capacity required for charging an electric vehicle battery with a capacity of 16,8 kWh in this study. For this purpose, PV system optimum tilt and azimuth angles are determined, and PV sizing is performed. The objective function is determined as providing the total energy of the electric vehicle battery for one year with the total energy produced by the PV system for one year. Under these conditions, the results obtained with the help of the MATLAB model show that a PV capacity of 3,35 kWp can supply the energy needs of a vehicle throughout the year. This study presents an effective method for determining the optimum capacity of PV systems for electric vehicle charging systems.

Proje Numarası

120E365 nolu TÜBİTAK 1001 Projesi

Kaynakça

  • Anon., 2020. BU-1003: Electric Vehicle (EV) – Battery University. Battery University. Retrieved March 6, 2024 (www.batteryuniversity.com).
  • Arulvendhan, K., Srinivas, K. N., Rajamanickam, N., Alharbi, M., Seada, H., 2024. Hybrid Compensation Based Efficient Wireless Charging System Design with Solar Photovoltaic Interface Toward Sustainable Transportation. IEEE Access, 12, 87152-87166.
  • Ayaz, R., Nakir, I., Tanrioven, M., 2014. An Improved Matlab-Simulink Model of PV Module Considering Ambient Conditions. International Journal of Photoenergy.
  • Becherif, M., Ayad, M. Y., Hissel, D., Mkahl, R., 2011. Design and Sizing of a Stand-Alone Recharging Point for Battery Electrical Vehicles Using Photovoltaic Energy. IEEE Vehicle Power and Propulsion Conference, VPPC.
  • Bellini, A., Bifaretti, S., Iacovone, V., Cornaro, C., 2009. Simplified Model of A Photovoltaic Module. Applied Electronics.
  • Benghanem, M. 2011. Optimization of Tilt Angle for Solar Panel: Case Study for Madinah, Saudi Arabia. Applied Energy 88(4),1427–33.
  • Chen, Y., Cao, L., Wang, F., 2021. Research on Optimal Configuration Method of Devices for Integrated PV Storage and Charging Station. 5th IEEE Conference on Energy Internet and Energy System Integration: Energy Internet for Carbon Neutrality, EI2 2021 1344–48.
  • Das, S., Acharjee, P., Bhattacharya, A., 2021. Charging Scheduling of Electric Vehicle Incorporating Grid-to-Vehicle and Vehicle-to-Grid Technology Considering in Smart Grid. IEEE Transactions on Industry Applications 57(2),1688–1702.
  • Duffie, J. A., Beckman, W. A., 2013. Solar Engineering of Thermal Processes: Fourth Edition. Solar Engineering of Thermal Processes: Fourth Edition.
  • Gülkaya, B., Ateş, Y., 2021. Elektrikli Taşıtların Dağıtılmış Üretim Tabanlı Şebekeler Üzerindeki Etkilerinin Analizi Ve Çözüm Önerileri. Mühendislik Bilimleri ve Tasarım Dergisi 9(4),1174–99.
  • Güner, S., Yazici, S., 2022. Bir Güneş Enerji Sisteminin Dağıtım Sistemi Güvenilirliğine Etkilerinin İncelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi 10(2),538–49.
  • Heba, A., Gastli, A., Ben-Brahim, L., Semira, M., 2022. Planning and Optimizing Electric-Vehicle Charging Infrastructure Through System Dynamics. IEEE Access, 10, 17495–17514.
  • John, S., Vincent. G., 2021. PV Fed Electric Vehicle Charging Station with Power Backup. Asia-Pacific Power and Energy Engineering Conference, APPEEC 2021-November.
  • Li, B., Sun, H., Lou, J., Sun, K., Zhang, Z., Sun, Y., 2024. An Integration Scheme for Highway Rest Area Integrating the Distributed Photovoltaic Generation and Energy Storage. IEEE Transactions on Industry Applications, 60(1), 1083–1092.
  • Liu, B., Jordan, R., 1963. The Long-Term Average Performance of Flat-Plate Solar-Energy Collectors: With Design Data for the U.S., Its Outlying Possessions and Canada. Solar Energy 7(2),53–74.
  • Mishra, D., Singh, B., Panigrahi, B. K., 2022. Sigma-Modified Power Control and Parametric Adaptation in a Grid-Integrated PV for EV Charging Architecture. IEEE Transactions on Energy Conversion, 37(3), 1965–1976.
  • Mukherjee, J. C., Arobinda G., 2015. A Review of Charge Scheduling of Electric Vehicles in Smart Grid. IEEE Systems Journal 9(4),1541–53.
  • Muttaqi, K. M., Rahman, O., Sutanto, D., Hossain Lipu, M. S., Abdolrasol, M. G. M., Hannan, M. A., 2022. High-Frequency Ripple Injection Signals for the Effective Utilization of Residential EV Storage in Future Power Grids With Rooftop PV System. IEEE Transactions on Industry Applications, 58(5), 6655–6665.
  • Prajapati, S, and Fernandez, E., 2019. Rooftop Solar PV System for Commercial Office Buildings for EV Charging Load. 2019 IEEE 6th International Conference on Smart Instrumentation, Measurement and Application, ICSIMA 2019.
  • Rangaraju, J., Gong X., 2020. Taking Charge of Electric Vehicles-Both in the Vehicle and on the Grid.
  • Sekhar, K. S. R., Chaudhari, M. A., Khadkikar, V., 2023. Enhanced Hybrid Converter Topology for PV-Grid-EV Integration. IEEE Transactions on Energy Conversion, 38(4), 2634–2646.
  • Tamizhmani, G., Ji, L., Tang, Y., Petacci L., 2003. Photovoltaic Module Thermal/Wind Performance: Long-Term Monitoring and Model Development for Energy Rating. NCPV and Solar Program Review Meeting, NREL.
  • Yildizhan, D., Erenoğlu, A. K., Erdi̇nç, O., 2022. Elektrikli Araç Entegrasyonunun Dağıtım Sistemine Etkilerinin İncelenmesi Ve Şarj İstasyonu Altyapısının Tayin Edilmesi. Mühendislik Bilimleri ve Tasarım Dergisi 10(4),1232–42.
  • Xiao, L., Muttaqi, K. M., & Agalgaonkar, A. P., 2023. Improving Reliability of PV-Powered Highway with Electric Vehicle Charging Services. IEEE Transactions on Industry Applications, 60(2), 2002–2011.
  • Yousuf, A. K. M., Wang, Z., Paranjape, R., Tang, Y., 2023. Electric Vehicle Charging Station Infrastructure: A Comprehensive Review of Technologies, Challenges, and Mitigation Strategies. Canadian Conference on Electrical and Computer Engineering, 588–92.
  • Yüzer, E. Ö., Bozkurt, A., Barutçu, Ç., 2023. Fotovoltaik Sistem Çıkış Gücünün Yapay Sinir Ağları Ve Matlab/Simulink Modellerinin Entegrasyonu İle Belirlenmesi. Mühendislik Bilimleri ve Tasarım Dergisi 11(2),551–63.
  • Zhang, S., James, J. Q. Y., 2022. Electric Vehicle Dynamic Wireless Charging System: Optimal Placement and Vehicle-to-Grid Scheduling. IEEE Internet of Things Journal 9(8),6047–57.
  • Zhang, T., Wei C., Zhu, H., Zhigang, C., 2014. Charging Scheduling of Electric Vehicles with Local Renewable Energy under Uncertain Electric Vehicle Arrival and Grid Power Price. IEEE Transactions on Vehicular Technology 63(6),2600–2612.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fotovoltaik Güç Sistemleri
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Ramazan Ayaz 0000-0002-6201-1181

Hakan Akça 0000-0001-9138-0755

Proje Numarası 120E365 nolu TÜBİTAK 1001 Projesi
Yayımlanma Tarihi 26 Eylül 2024
Gönderilme Tarihi 6 Mart 2024
Kabul Tarihi 16 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 3

Kaynak Göster

APA Ayaz, R., & Akça, H. (2024). FOTOVOLTAİK SİSTEM ENTEGRELİ ELEKTRİKLİ ARAÇ ŞARJ SİSTEMLERİNDE OPTİMUM KAPASİTENİN BELİRLENMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 12(3), 476-487. https://doi.org/10.21923/jesd.1448108