EFFECT OF SR CONTENT ON THE MICROSTRUCTURE DEVELOPMENT AND ELECTROCHEMICAL PERFORMANCE OF LA1-XSRXMNO3 FILMS
Yıl 2024,
Cilt: 12 Sayı: 4, 653 - 662, 25.12.2024
Mahla Shahsavar Gocmen
,
Aycan Ekşioğlu
,
Aligül Büyükaksoy
Öz
Strontium doped lanthanum manganite (La1-xSrxMnO3 -LSM) is the conventionally used oxygen reduction electrocatalyst in solid oxide fuel cell cathodes. In recent years, Sr-segregation at the LSM surface has been shown to occur and limit oxygen reduction performance. Therefore, the effect of Sr-doping on the microstructure development and performance of liquid precursor-derived LSM film electrodes with different Sr-contents was investigated in this study. It was found that as Sr content increased, LSM structure became amorphous, which is beneficial for the electrochemical performance. Despite this fact, the undoped LaMnO3 film performed better in comparison to heavily Sr-doped LSM, likely because of Sr-segregation at the Sr-doped electrode surface. These results suggested that trying to avoid Sr doping in LaMnO3 electrodes may be a good strategy if its microstructural instability could be addressed, to achieve high performance solid oxide fuel cell cathodes.
Kaynakça
- Branković, Z., Đuriš, K., Radojković, A., Bernik, S., Jagličić, Z., Jagodič, M., Vojisavljevic, K., Branković, G., 2010. Magnetic properties of doped LaMnO3 ceramics obtained by a polymerizable complex method. Journal of Sol-Gel Science and Technology, vol. 55, pp. 311-316.
- Cai, Z., Kubicek, M., Fleig, J., Yildiz, B., 2012. Chemical heterogeneities on La0.6Sr0.4CoO3-δ thin films-correlations to cathode surface activity and stability. Chemistry of Materials, vol. 24, no. 6, pp. 1116-1127.
- Caillol, N., Pijolat, M., Siebert, E., 2007. Investigation of chemisorbed oxygen, surface segregation and effect of post-treatments on La0.8Sr0.2MnO3 powder and screen-printed layers for solid oxide fuel cell cathodes. Applied Surface Science, vol. 253, no. 10, pp. 4641-4648.
- Cavallaro, A., Pramana, S. S., Ruiz-Trejo, E., Sherrell, P. C., Ware, E., Kilner, J. A., Skinner, S. J., 2018. Amorphous-Cathode-Route towards Low Temperature. Sustainable Energy Fuels, vol. 2, pp. 862-875
- Cooper, S.J., Brandon, N. P., 2017. Chapter 1 - An Introduction to Solid Oxide Fuel Cell Materials, Technology and Applications, Editor(s): Nigel P. Brandon, Enrique Ruiz-Trejo, Paul Boldrin, Solid Oxide Fuel Cell Lifetime and Reliability, Academic Press.
- Demirkal, E., Buyukaksoy, A., 2019. Effect of frit content in the silver current collector inks on the electrochemical performance of solid oxide fuel cell cathodes. Journal of Engineering Sciences and Design, vol. 7, no. 4, pp. 796-802.
- Eksioglu, A., Arslan, L. C., Sezen, M., Ow-Yang, C., Buyukaksoy, A., 2019. Formation of nanocomposite solid oxide fuel cell cathodes by preferential clustering of cations from a single polymeric precursor. ACS Applied Materials & Interfaces, vol. 11, no. 51, pp. 47904-47916.
- Eksioglu, A., Sakir, I. A., Buyukaksoy, A., 2022. Formation mechanism of large porosity in solid oxide cell electrode coatings fabricated using ethylene glycol-based precursor solutions and its impact on the electrochemical performance. Ceramics International, vol. 49, no. 1, pp. 956-963.
- François, M., Carpanese, M. P., Heintz, O., Lescure, V., Clematis, D., Combemale, L., Demoisson, F., Caboche, G., 2021. Chemical degradation of the La0.6Sr0.4Co0.2Fe0.8O3-δ interface during sintering and cell operation. Energies, vol. 14, no. 12, pp. 3674.
- Hong, J., Anisur, M. R., Heo, S. J., Dubey, P. K., Singh, P., 2021. Sulphur poisoning and performance recovery of SOFC air electrodes. Frontiers in Energy, vol. 9, pp. 643431.
- Huber, A-K., Falk, M., Rohnke, M., Luerssen, B., Amati, M., Gregoratti, L., Hesse, D., Janek, J., 2012. In situ study of activation of LSM fuel cell cathodes-electrochemistry and surface analysis of thin-film electrodes. Journal of Catalysis, vol. 294, pp. 79-88.
- Jiang, S. P., 2019. Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells-A review. International Journal of Hydrogen Energy., vol. 44, no. 14, pp. 7448-7493.
Kenji, T., Nishiya, M., 1992. LaMnO3 air cathodes containing ZrO2 electrolyte for high temperature solid oxide fuel cells. Solid State Ionics, vol. 57 no. 3-4, 295-302.
- Khan, M. Z., Iltaf, A., Ishfaq, H. A., Khan, F. N., Tanveer, W. H., Song, R-H., Mehran, M. T., Saleem, M., Hussain, A., Masaud, Z., 2021. Flat-tubular solid oxide fuel cells and stacks: a review. Journal of Asian Ceramic Societies, vol. 9, no. 3, pp. 745-770.
- Koo, B., Kim, K., Kim, J. K., Kwon, H., Han, J. W., Jung, W., 2018. Sr Segregation in Peroskite Oxides: Why It Happens and How It Exists. Joule, vol. 2, pp. 1476-1499.
- Kubicek, M., Limbeck, A., Frömling, T., Hutter, H., Fleig, J., 2011. Relationship between cation segregation and the electrochemical oxygen reduction kinetics of La0.6Sr0.4CoO3-δ thin film electrodes. Journal of the Electrochemical Society, vol. 158 no. 6, pp. B727.
- Lee, W., Han, J. W., Chen, Y., Cai, Z., Yildiz, B., 2013. Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. Journal of the American Chemical Society, vol. 135, no. 21, pp. 7909-7925.
- Majkic, G., Mironova, M., Wheeler, L. T., Salama, K., 2004. Stress-induced diffusion and defect chemistry of La0.2Sr0.8Fe0.8Cr0.203-δ: structural, elemental and chemical analysis. Solid State Ionics, vol. 167, no. 3-4, pp. 243-254.
- Mitterdorfer, A., Gauckler, L. J., 1998. La2Zr2O7 formation and oxygen reduction kinetics of the La0.85Sr0.15MnyO2(g)|YSZ system. Solid State Ionics, vol. 111, no. 3-4, pp. 185-218.
- Niu, Y., Zhou, Y., Lv, W., Chen, Y., Zhang, Y., Zhang, W., Luo, Z., Kane, N., Ding, Y., Soule, L., Liu, Y., He, W., Liu, M.,2021. Enhancing oxygen reduction activity and Cr tolerance of solid oxide fuel cell cathodes by a multiphase catalyst coating. Advanced Functional Materials, vol. 31, no. 19, pp. 2100034.
- Oh, D., Gostovic, D., Wachsman, E. D., 2012. Mechanism of La0.6Sr0.4Co0.2Fe0.8O3 cathode degradation. Journal of Materials Research, vol. 27, pp. 1992-1999.
- Perry Murray, E., Barnett, S. A., 2001. (La, Sr)MnO3-(Ce,Gd)O2-x composite cathodes for solid oxide fuel cells. Solid State Ionics, vol. 143 no. 3-4, pp. 265-273.
- Ping Jiang, S., 2008. Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. Journal of Materials Science, vol. 43, pp. 6799–6833.
- Song, H. S., Kim, W. H., Hyun, S. H., Moon, J., Kim, J., Lee, H-W., 2007. Effect of starting particulate materials on microstructure and cathodic performance of nanoporous LSM-YSZ composite cathodes. Journal of Power Sources, vol. 167, no. 2, pp. 258-264.
- Stevenson, J. W., Armstrong, T. R., Carneim, R. D., Pederson, L. R., Weber, W. J., 1996. Electrochemical Properties of Mixed Conducting Perovskites La1-xMxCo1-yFeyO3-δ (M=Sr, Ba, Ca). Journal of the Electrochemical Society, vol. 143, pp. 2722.
- Tsai, T., Barnett, S. A., 1997. Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fuel cell performance. Solid State Ionics, vol. 93, no. 3-4, pp. 207-217.
Turky, A. O., Rashad, M. M., Hassan, A. M., Elnaggar, E. M., Bechelany M., 2017. Optical, electrical and magnetic properties of lanthanum strontium manganite La1-xSrxMnO3 Synthesized Through the Citrate Combustion Method. Physical Chemistry Chemical Physics, vol. 19, 6878-6886.
- Van der Heide, P. A. W., 2002. Systematic x-ray photoelectron spectroscopy study of La1-xSrx-based perovskite-type oxides. Surface and Interface Analysis, vol. 33, no. 5, pp. 414-425.
- Yu, Y., Ludwig, K. F., Woicik, J. C., Gopalan, S., Pal, U. B., Kaspar, T. C., Basu, S. N., 2016. Effect of Sr content and strain on Sr surface segregation of La1-xSrxCo0.2Fe0.8O3-δ as cathode material for solid oxide fuel cells. ACS Applied Materials & Interfaces, vol. 8, no. 40, pp. 26704-26711
- Østergård, M. J. L., Clausen, C., Bagger, C., Mogensen, M., 1995. Manganite-zirconia composite cathodes for SOFC: Influence of structure and composition. Electrochimica Acta, vol. 40, no. 12, pp. 1971-198.
STRONSİYUM KATKISININ LA1-XSRXMNO3 FİLMLERİNİN MİKROYAPI GELİŞİMİ VE ELEKTROKİMYASAL PERFORMANSI ÜZERİNE ETKİSİ
Yıl 2024,
Cilt: 12 Sayı: 4, 653 - 662, 25.12.2024
Mahla Shahsavar Gocmen
,
Aycan Ekşioğlu
,
Aligül Büyükaksoy
Öz
Stronsiyum katkılı lantanyum manganez oksit, katı oksit yakıt hücresi katotlarında geleneksel olarak kullanılan oksijen indirgenme elektrokatalizörüdür. Fakat, lantanyum ile boyut farkı ve yüzeydeki oksijen boşluklarının elektrostatik çekimi nedeniyle LSM’in yüzeyinde stronsiyum birikmesi yalıtkan SrO fazının fazının oluşumuna ve performans kaybına neden olur. Bu nedenle ABO3 tipi elektrokatalizörlerin A bölgesindeki stronsiyum katkısının gerekliliği yeniden değerlendirilmelidir. Bu amaçla, LSM elektrokatalizörlerinde stronsiyum katkısının gerekliliği, itriyum katkılı zirkonyum oksit elektrolitleri üzerinde biriktirilen polimerik LSM öncüsünden türetilmiş ince filmler üzerinde yeniden değerlendirildi. Sr içeriği arttıkça kristallik ve dolayısıyla elektrokimyasal performans düştü. Bu sonuç, stronsiyum içermeyen LSM’e sahip nanokompozit elektrotlar üretilebilirse, yüksek performans için stronsiyum katkısının gerekli olmayabileceğini gösterdi.
Kaynakça
- Branković, Z., Đuriš, K., Radojković, A., Bernik, S., Jagličić, Z., Jagodič, M., Vojisavljevic, K., Branković, G., 2010. Magnetic properties of doped LaMnO3 ceramics obtained by a polymerizable complex method. Journal of Sol-Gel Science and Technology, vol. 55, pp. 311-316.
- Cai, Z., Kubicek, M., Fleig, J., Yildiz, B., 2012. Chemical heterogeneities on La0.6Sr0.4CoO3-δ thin films-correlations to cathode surface activity and stability. Chemistry of Materials, vol. 24, no. 6, pp. 1116-1127.
- Caillol, N., Pijolat, M., Siebert, E., 2007. Investigation of chemisorbed oxygen, surface segregation and effect of post-treatments on La0.8Sr0.2MnO3 powder and screen-printed layers for solid oxide fuel cell cathodes. Applied Surface Science, vol. 253, no. 10, pp. 4641-4648.
- Cavallaro, A., Pramana, S. S., Ruiz-Trejo, E., Sherrell, P. C., Ware, E., Kilner, J. A., Skinner, S. J., 2018. Amorphous-Cathode-Route towards Low Temperature. Sustainable Energy Fuels, vol. 2, pp. 862-875
- Cooper, S.J., Brandon, N. P., 2017. Chapter 1 - An Introduction to Solid Oxide Fuel Cell Materials, Technology and Applications, Editor(s): Nigel P. Brandon, Enrique Ruiz-Trejo, Paul Boldrin, Solid Oxide Fuel Cell Lifetime and Reliability, Academic Press.
- Demirkal, E., Buyukaksoy, A., 2019. Effect of frit content in the silver current collector inks on the electrochemical performance of solid oxide fuel cell cathodes. Journal of Engineering Sciences and Design, vol. 7, no. 4, pp. 796-802.
- Eksioglu, A., Arslan, L. C., Sezen, M., Ow-Yang, C., Buyukaksoy, A., 2019. Formation of nanocomposite solid oxide fuel cell cathodes by preferential clustering of cations from a single polymeric precursor. ACS Applied Materials & Interfaces, vol. 11, no. 51, pp. 47904-47916.
- Eksioglu, A., Sakir, I. A., Buyukaksoy, A., 2022. Formation mechanism of large porosity in solid oxide cell electrode coatings fabricated using ethylene glycol-based precursor solutions and its impact on the electrochemical performance. Ceramics International, vol. 49, no. 1, pp. 956-963.
- François, M., Carpanese, M. P., Heintz, O., Lescure, V., Clematis, D., Combemale, L., Demoisson, F., Caboche, G., 2021. Chemical degradation of the La0.6Sr0.4Co0.2Fe0.8O3-δ interface during sintering and cell operation. Energies, vol. 14, no. 12, pp. 3674.
- Hong, J., Anisur, M. R., Heo, S. J., Dubey, P. K., Singh, P., 2021. Sulphur poisoning and performance recovery of SOFC air electrodes. Frontiers in Energy, vol. 9, pp. 643431.
- Huber, A-K., Falk, M., Rohnke, M., Luerssen, B., Amati, M., Gregoratti, L., Hesse, D., Janek, J., 2012. In situ study of activation of LSM fuel cell cathodes-electrochemistry and surface analysis of thin-film electrodes. Journal of Catalysis, vol. 294, pp. 79-88.
- Jiang, S. P., 2019. Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells-A review. International Journal of Hydrogen Energy., vol. 44, no. 14, pp. 7448-7493.
Kenji, T., Nishiya, M., 1992. LaMnO3 air cathodes containing ZrO2 electrolyte for high temperature solid oxide fuel cells. Solid State Ionics, vol. 57 no. 3-4, 295-302.
- Khan, M. Z., Iltaf, A., Ishfaq, H. A., Khan, F. N., Tanveer, W. H., Song, R-H., Mehran, M. T., Saleem, M., Hussain, A., Masaud, Z., 2021. Flat-tubular solid oxide fuel cells and stacks: a review. Journal of Asian Ceramic Societies, vol. 9, no. 3, pp. 745-770.
- Koo, B., Kim, K., Kim, J. K., Kwon, H., Han, J. W., Jung, W., 2018. Sr Segregation in Peroskite Oxides: Why It Happens and How It Exists. Joule, vol. 2, pp. 1476-1499.
- Kubicek, M., Limbeck, A., Frömling, T., Hutter, H., Fleig, J., 2011. Relationship between cation segregation and the electrochemical oxygen reduction kinetics of La0.6Sr0.4CoO3-δ thin film electrodes. Journal of the Electrochemical Society, vol. 158 no. 6, pp. B727.
- Lee, W., Han, J. W., Chen, Y., Cai, Z., Yildiz, B., 2013. Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. Journal of the American Chemical Society, vol. 135, no. 21, pp. 7909-7925.
- Majkic, G., Mironova, M., Wheeler, L. T., Salama, K., 2004. Stress-induced diffusion and defect chemistry of La0.2Sr0.8Fe0.8Cr0.203-δ: structural, elemental and chemical analysis. Solid State Ionics, vol. 167, no. 3-4, pp. 243-254.
- Mitterdorfer, A., Gauckler, L. J., 1998. La2Zr2O7 formation and oxygen reduction kinetics of the La0.85Sr0.15MnyO2(g)|YSZ system. Solid State Ionics, vol. 111, no. 3-4, pp. 185-218.
- Niu, Y., Zhou, Y., Lv, W., Chen, Y., Zhang, Y., Zhang, W., Luo, Z., Kane, N., Ding, Y., Soule, L., Liu, Y., He, W., Liu, M.,2021. Enhancing oxygen reduction activity and Cr tolerance of solid oxide fuel cell cathodes by a multiphase catalyst coating. Advanced Functional Materials, vol. 31, no. 19, pp. 2100034.
- Oh, D., Gostovic, D., Wachsman, E. D., 2012. Mechanism of La0.6Sr0.4Co0.2Fe0.8O3 cathode degradation. Journal of Materials Research, vol. 27, pp. 1992-1999.
- Perry Murray, E., Barnett, S. A., 2001. (La, Sr)MnO3-(Ce,Gd)O2-x composite cathodes for solid oxide fuel cells. Solid State Ionics, vol. 143 no. 3-4, pp. 265-273.
- Ping Jiang, S., 2008. Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. Journal of Materials Science, vol. 43, pp. 6799–6833.
- Song, H. S., Kim, W. H., Hyun, S. H., Moon, J., Kim, J., Lee, H-W., 2007. Effect of starting particulate materials on microstructure and cathodic performance of nanoporous LSM-YSZ composite cathodes. Journal of Power Sources, vol. 167, no. 2, pp. 258-264.
- Stevenson, J. W., Armstrong, T. R., Carneim, R. D., Pederson, L. R., Weber, W. J., 1996. Electrochemical Properties of Mixed Conducting Perovskites La1-xMxCo1-yFeyO3-δ (M=Sr, Ba, Ca). Journal of the Electrochemical Society, vol. 143, pp. 2722.
- Tsai, T., Barnett, S. A., 1997. Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fuel cell performance. Solid State Ionics, vol. 93, no. 3-4, pp. 207-217.
Turky, A. O., Rashad, M. M., Hassan, A. M., Elnaggar, E. M., Bechelany M., 2017. Optical, electrical and magnetic properties of lanthanum strontium manganite La1-xSrxMnO3 Synthesized Through the Citrate Combustion Method. Physical Chemistry Chemical Physics, vol. 19, 6878-6886.
- Van der Heide, P. A. W., 2002. Systematic x-ray photoelectron spectroscopy study of La1-xSrx-based perovskite-type oxides. Surface and Interface Analysis, vol. 33, no. 5, pp. 414-425.
- Yu, Y., Ludwig, K. F., Woicik, J. C., Gopalan, S., Pal, U. B., Kaspar, T. C., Basu, S. N., 2016. Effect of Sr content and strain on Sr surface segregation of La1-xSrxCo0.2Fe0.8O3-δ as cathode material for solid oxide fuel cells. ACS Applied Materials & Interfaces, vol. 8, no. 40, pp. 26704-26711
- Østergård, M. J. L., Clausen, C., Bagger, C., Mogensen, M., 1995. Manganite-zirconia composite cathodes for SOFC: Influence of structure and composition. Electrochimica Acta, vol. 40, no. 12, pp. 1971-198.