Araştırma Makalesi
BibTex RIS Kaynak Göster

COMPARISON OF SOME DURABILITY PROPERTIES OF GEOPOLYMER MORTARS PRODUCED WITH DIFFERENT CURING METHODS WITH CEMENT MORTARS

Yıl 2024, Cilt: 12 Sayı: 4, 821 - 834, 25.12.2024
https://doi.org/10.21923/jesd.1473561

Öz

In this study, some durability properties of microwave-cured fly ash-, pumice-, perlite-, and burnt clay-based geopolymer mortars were investigated comparatively with those of the conventional oven-cured geopolymer mortars. In this context, alkali-silica reaction, sorptivity and abrasion resistance tests were carried out, and the microstructures of the pastes were examined using scanning electron microscope to investigate the relationship between durability and microstructure. In order to compare the durability properties of geopolymer mortars, portland cement mortars with similar compressive strength were produced. Results indicated that geopolymer mortars exhibit no expansion due to alkali-silica reaction, while their abrasion resistance was comparable to that of the cement mortars. The sorptivity test and scanning electron microscope examinations revealed that the type of aluminosilicate and curing method influence the capillary water absorption rate. Pumice-, perlite-, and burnt clay-based geopolymer mortars demonstrated rapid water sorptivity. The fact was attributed to the presence of considerable amount of pores in the microstructure, as provided by electron microscope images.

Proje Numarası

119M950

Kaynakça

  • Acar, M.C., Şener, A., Özbayrak, A., Çelik, A.İ, 2020. Geopolimer Harçlarda Zeolit Katkısının Etkisi, Mühendislik Bilimleri ve Tasarım Dergisi 8(3), 820-832. https://doi.org/10.21923/jesd.768565
  • Adam, A.A., Molyneaux, T.C.K., Patnaikuni, I., Law, D.W., 2009. Strength, Sorptivity and Carbonation in Blended OPC-GGBS, Alkali Activated Slag, and Fly Ash Based Geopolymer Concrete, Challenges, Opportunities and Solutions in Structural Engineering and Construction 563-568.
  • Al-Azzawi, Z.H.N., 2019, Investigation of Durability Properties of Geopolymer Containing Metakaolin, Ph. D. Thesis, Erciyes University Graduate School of Natural and Applied Science, 141p.
  • Amin, M., Elsakhawy, Y., Abu El-Hassan, K., Abdelsalam, B.A., 2022. Behavior Evaluation of Sustainable High Strength Geopolymer Concrete Based on Fly Ash, Metakaolin, and Slag. Case Studies in Construction Materials 16, e00976. https://doi.org/10.1016/j.cscm.2022.e00976
  • Aschoff, J., Partschefeld, S., Schneider, J., Osburg, A., 2024. Effect of Microwaves on the Rapid Curing of Metakaolin- and Aluminum Orthophosphate-Based Geopolymers. Materials 17, 463. https://doi.org/10.3390/ma17020463
  • Badkul, A., Paswan, R., Singh, S.K., Tegar, J.P., 2021. A Comprehensive Study on the Performance of Alkali Activated Fly Ash/GGBFS Geopolymer Concrete Pavement. Road Materials and Pavement Design 23, 1815–1835. https://doi.org/10.1080/14680629.2021.1926311
  • Diksha, Dev, N., Goyal, P.K., 2023. Prediction of Compressive Strength of Alccofine-Based Geopolymer Concrete. Iranian Journal of Science and Technology, Transactions of Civil Engineering. https://doi.org/10.1007/s40996-023-01308-2
  • Ekiz Barış, K., 2024. Doğal Puzolan-esaslı Jeopolimer Üretiminde Mikrodalga Kürünün Rolü, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39(4), 2239-2251. https://doi.org/10.17341/gazimmfd.1267017
  • Gultekin, A., Ramyar, K., 2022. Effect of Curing Type on Microstructure and Compressive Strength of Geopolymer Mortars. Ceramics International, 48, 16156–16172. https://doi.org/10.1016/j.ceramint.2022.02.163
  • Gultekin, A., 2024. Compressive Strength and Microstructure of Microwave-Cured Waste Brick Powder-Based Geopolymer Mortars, Iranian Journal of Science and Technology, Transactions of Civil Engineering 48, 3119–3133. https://doi.org/10.1007/s40996-023-01330-4
  • Hossain, M.M., Karim, M.R., A Elahi, M.M., Mohd Zain, M.F., 2020. Water Absorption and Sorptivity of Alkali-Activated Ternary Blended Composite Binder. Journal of Building Engineering 31, 101370. https://doi.org/10.1016/j.jobe.2020.101370
  • Jacob, A., Ephraim, E.K., Muhammad, M., 2020. Properties of Metakaolin Based Geopolymer Concrete Made with Recycled Concrete Aggregate. International Journal of Research and Innovation in Applied Science, 5, 10, 57-63
  • Kanagaraj, B., Anand, N., Samuvel Raj, R., Lubloy, E., 2023. Techno-Socio-Economic Aspects of Portland Cement, Geopolymer, and Limestone Calcined Clay Cement (LC3) Composite Systems: A-State-Of-Art-Review. Construction and Building Materials 398, 132484. https://doi.org/10.1016/j.conbuildmat.2023.132484
  • Khalid, S.M., Shobha, M.S., 2024. Effect of Ternary Blends on Mechanical Strength, Durability and Microstructural Properties of Geopolymer Concrete. Iranian Journal of Science and Technology, Transactions of Civil Engineering. https://doi.org/10.1007/s40996-023-01241-4
  • Lei, J., Fu, J., Yang, E.-H., 2020. Alkali-Silica Reaction Resistance and Pore Solution Composition of Low-Calcium Fly Ash-Based Geopolymer Concrete. Infrastructures 5, 96. https://doi.org/10.3390/infrastructures5110096
  • Li, K.L., Huang, G.H., Jiang, L.H., Cai, Y.B., Chen, J., Ding, J.T., 2006. Study on Abilities of Mineral Admixtures and Geopolymer to Restrain ASR. Key Engineering Materials 302–303, 248–254. https://doi.org/10.4028/www.scientific.net/KEM.302-303.248
  • Luhar, S., Luhar, I., Nicolaides, D., Gupta, R., 2021. Durability Performance Evaluation of Rubberized Geopolymer Concrete. Sustainability 13, 5969. https://doi.org/10.3390/su13115969
  • Nadeem, M., Haq, E.U., Ahmed, F., Rafiq, M.S., Awan, G.H., Zain-ul-Abdein, M., 2020. Effect of Microwave Curing on the Construction Properties of Natural Soil Based Geopolymer Foam, Construction and Building Materials 230, 117074. https://doi.org/10.1016/j.conbuildmat.2019.117074
  • Ng, C., Alengaram, U.J., Wong, L.S., Mo, K.H., Jumaat, M.Z., Ramesh, S., 2018. A Review on Microstructural Study and Compressive Strength of Geopolymer Mortar, Paste and Concrete. Construction and Building Materials 186, 550–576. https://doi.org/10.1016/j.conbuildmat.2018.07.075
  • Nurruddin, M.F., Haruna, S., Mohammed, B.S., Shaaban, I.G., 2018. Methods of Curing Geopolymer Concrete: A Review. International Journal of Advanced and Applied Sciences. 5, 31–36. https://doi.org/10.21833/ijaas.2018.01.005
  • Pouhet, R., Cyr, M., Multon, S., 2016. Can Metakaolin-Based Geopolymers Suffer from Alkali–Silica Reaction. 5th International Conference on Alkali-Aggregate Reaction, Sao Paulo, Brazil.
  • Pradhan, P., Dwibedy, S., Pradhan, M., Panda, S., Panigrahi, S.K., 2022. Durability Characteristics of Geopolymer Concrete - Progress and Perspectives. Journal of Building Engineering 59, 105100. https://doi.org/10.1016/j.jobe.2022.105100
  • Shaikh, F.U.A., 2014. Effects of Alkali Solutions on Corrosion Durability of Geopolymer Concrete. Advances in Concrete Construction, 2, 109–123. https://doi.org/10.12989/ACC.2014.2.2.109
  • Shi, C., Shi, Z., Hu, X., Zhao, R., Chong, L., 2015. A Review on Alkali-Aggregate Reactions in Alkali-Activated Mortars/Concretes Made With Alkali-Reactive Aggregates. Materials and Structures 48, 621–628. https://doi.org/10.1617/s11527-014-0505-2
  • Shi, S., Li, H., Fabian, M., Sun, T., Grattan, K.T.V., Xu, D., Basheer, P.A.M., Bai, Y., 2016. Alkali-Activated Fly Ash Manufactured with Multi-stage Microwave Curing, Fourth International Conference on Sustainable Construction Materials and Technologies, Las Vegas, USA.
  • Somaratna, J., Ravikumar, D., Neithalath, N., 2010. Response of alkali activated fly ash mortars to microwave curing, Cement and Concrete Research 40, 1688–1696. https://doi.org/10.1016/j.cemconres.2010.08.010
  • Thompson, A., Saha, A.K., Sarker, P.K., 2019. Comparison of the Alkali-Silica Reactions of Ferronickel Slag Aggregate in Fly Ash Geopolymer and Cement Mortars. European Journal of Environmental and Civil Engineering 26, 891–904. https://doi.org/10.1080/19648189.2019.1686068
  • Yang, K., Yang, C., Magee, B., Nanukuttan, S., Ye, J., 2016. Establishment of a Preconditioning Regime for Air Permeability and Sorptivity of Alkali-Activated Slag Concrete. Cement and Concrete Composites 73, 19–28. https://doi.org/10.1016/j.cemconcomp.2016.06.019
  • Zhang, B., 2024. Durability of Low-carbon Geopolymer Concrete: A Critical Review. Sustainable Materials and Technologies 40, e00882. https://doi.org/10.1016/j.susmat.2024.e00882
  • Zhao, R., Sanjayan, J.G., 2011. Geopolymer and Portland Cement Concretes in Simulated Fire. Magazine of Concrete Research 63, 163–173. https://doi.org/10.1680/macr.9.00110

FARKLI KÜR YÖNTEMLERİYLE ÜRETİLEN GEOPOLİMER HARÇLARIN BAZI DURABİLİTE ÖZELLİKLERİNİN ÇİMENTO HARÇLARIYLA KIYASLANMASI

Yıl 2024, Cilt: 12 Sayı: 4, 821 - 834, 25.12.2024
https://doi.org/10.21923/jesd.1473561

Öz

Bu çalışmada, mikrodalga kürü ile üretilen uçucu kül, pomza, perlit ve pişirilmiş kil esaslı geopolimer harçların bazı durabilite özellikleri incelenmiş ve elde edilen sonuçlar geleneksel etüv kürü ile üretilen serilerle kıyaslanmıştır. Bu kapsamda alkali-silis reaksiyonu direnci, kılcal su emme hızı, aşınma direnci deneyleri yapılmış, ayrıca hamur mikro yapıları taramalı elektron mikroskobu ile incelenerek durabilite-içyapı ilişkisi irdelenmiştir. Geopolimer harçların durabilite özelliklerinin karşılaştırılması amacıyla, incelenen harca benzer basınç dayanımına sahip portland çimentolu harçlar üretilmiş ve iki sistemin durabilite konusundaki avantaj ve dezavantajları araştırılmıştır. Geopolimer harçlarda alkali-silis reaksiyonundan kaynaklanan bir genleşme yaşanmadığı ve geopolimer harçların aşınma dirençlerinin, çimento harçları ile kıyaslanabilecek seviyelerde olduğu tespit edilmiştir. Kılcallık deneyi ve taramalı elektron mikroskobu incelemelerinde elde edilen bulgular, alüminosilikat tipi ve kür yönteminin kılcal su emme hızı üzerinde etkili olduğunu; pomza, perlit ve pişirilmiş kil esaslı geopolimer harçların kılcal yolla hızlı bir şekilde su emebildiklerini, bunun da boşluklu mikro yapıdan kaynaklandığını göstermiştir.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

119M950

Teşekkür

Bu çalışma 119M950 proje kodu ile TÜBİTAK tarafından desteklenmiştir. Desteklerinden ötürü TÜBİTAK'a teşekkürlerimizi sunarız.

Kaynakça

  • Acar, M.C., Şener, A., Özbayrak, A., Çelik, A.İ, 2020. Geopolimer Harçlarda Zeolit Katkısının Etkisi, Mühendislik Bilimleri ve Tasarım Dergisi 8(3), 820-832. https://doi.org/10.21923/jesd.768565
  • Adam, A.A., Molyneaux, T.C.K., Patnaikuni, I., Law, D.W., 2009. Strength, Sorptivity and Carbonation in Blended OPC-GGBS, Alkali Activated Slag, and Fly Ash Based Geopolymer Concrete, Challenges, Opportunities and Solutions in Structural Engineering and Construction 563-568.
  • Al-Azzawi, Z.H.N., 2019, Investigation of Durability Properties of Geopolymer Containing Metakaolin, Ph. D. Thesis, Erciyes University Graduate School of Natural and Applied Science, 141p.
  • Amin, M., Elsakhawy, Y., Abu El-Hassan, K., Abdelsalam, B.A., 2022. Behavior Evaluation of Sustainable High Strength Geopolymer Concrete Based on Fly Ash, Metakaolin, and Slag. Case Studies in Construction Materials 16, e00976. https://doi.org/10.1016/j.cscm.2022.e00976
  • Aschoff, J., Partschefeld, S., Schneider, J., Osburg, A., 2024. Effect of Microwaves on the Rapid Curing of Metakaolin- and Aluminum Orthophosphate-Based Geopolymers. Materials 17, 463. https://doi.org/10.3390/ma17020463
  • Badkul, A., Paswan, R., Singh, S.K., Tegar, J.P., 2021. A Comprehensive Study on the Performance of Alkali Activated Fly Ash/GGBFS Geopolymer Concrete Pavement. Road Materials and Pavement Design 23, 1815–1835. https://doi.org/10.1080/14680629.2021.1926311
  • Diksha, Dev, N., Goyal, P.K., 2023. Prediction of Compressive Strength of Alccofine-Based Geopolymer Concrete. Iranian Journal of Science and Technology, Transactions of Civil Engineering. https://doi.org/10.1007/s40996-023-01308-2
  • Ekiz Barış, K., 2024. Doğal Puzolan-esaslı Jeopolimer Üretiminde Mikrodalga Kürünün Rolü, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39(4), 2239-2251. https://doi.org/10.17341/gazimmfd.1267017
  • Gultekin, A., Ramyar, K., 2022. Effect of Curing Type on Microstructure and Compressive Strength of Geopolymer Mortars. Ceramics International, 48, 16156–16172. https://doi.org/10.1016/j.ceramint.2022.02.163
  • Gultekin, A., 2024. Compressive Strength and Microstructure of Microwave-Cured Waste Brick Powder-Based Geopolymer Mortars, Iranian Journal of Science and Technology, Transactions of Civil Engineering 48, 3119–3133. https://doi.org/10.1007/s40996-023-01330-4
  • Hossain, M.M., Karim, M.R., A Elahi, M.M., Mohd Zain, M.F., 2020. Water Absorption and Sorptivity of Alkali-Activated Ternary Blended Composite Binder. Journal of Building Engineering 31, 101370. https://doi.org/10.1016/j.jobe.2020.101370
  • Jacob, A., Ephraim, E.K., Muhammad, M., 2020. Properties of Metakaolin Based Geopolymer Concrete Made with Recycled Concrete Aggregate. International Journal of Research and Innovation in Applied Science, 5, 10, 57-63
  • Kanagaraj, B., Anand, N., Samuvel Raj, R., Lubloy, E., 2023. Techno-Socio-Economic Aspects of Portland Cement, Geopolymer, and Limestone Calcined Clay Cement (LC3) Composite Systems: A-State-Of-Art-Review. Construction and Building Materials 398, 132484. https://doi.org/10.1016/j.conbuildmat.2023.132484
  • Khalid, S.M., Shobha, M.S., 2024. Effect of Ternary Blends on Mechanical Strength, Durability and Microstructural Properties of Geopolymer Concrete. Iranian Journal of Science and Technology, Transactions of Civil Engineering. https://doi.org/10.1007/s40996-023-01241-4
  • Lei, J., Fu, J., Yang, E.-H., 2020. Alkali-Silica Reaction Resistance and Pore Solution Composition of Low-Calcium Fly Ash-Based Geopolymer Concrete. Infrastructures 5, 96. https://doi.org/10.3390/infrastructures5110096
  • Li, K.L., Huang, G.H., Jiang, L.H., Cai, Y.B., Chen, J., Ding, J.T., 2006. Study on Abilities of Mineral Admixtures and Geopolymer to Restrain ASR. Key Engineering Materials 302–303, 248–254. https://doi.org/10.4028/www.scientific.net/KEM.302-303.248
  • Luhar, S., Luhar, I., Nicolaides, D., Gupta, R., 2021. Durability Performance Evaluation of Rubberized Geopolymer Concrete. Sustainability 13, 5969. https://doi.org/10.3390/su13115969
  • Nadeem, M., Haq, E.U., Ahmed, F., Rafiq, M.S., Awan, G.H., Zain-ul-Abdein, M., 2020. Effect of Microwave Curing on the Construction Properties of Natural Soil Based Geopolymer Foam, Construction and Building Materials 230, 117074. https://doi.org/10.1016/j.conbuildmat.2019.117074
  • Ng, C., Alengaram, U.J., Wong, L.S., Mo, K.H., Jumaat, M.Z., Ramesh, S., 2018. A Review on Microstructural Study and Compressive Strength of Geopolymer Mortar, Paste and Concrete. Construction and Building Materials 186, 550–576. https://doi.org/10.1016/j.conbuildmat.2018.07.075
  • Nurruddin, M.F., Haruna, S., Mohammed, B.S., Shaaban, I.G., 2018. Methods of Curing Geopolymer Concrete: A Review. International Journal of Advanced and Applied Sciences. 5, 31–36. https://doi.org/10.21833/ijaas.2018.01.005
  • Pouhet, R., Cyr, M., Multon, S., 2016. Can Metakaolin-Based Geopolymers Suffer from Alkali–Silica Reaction. 5th International Conference on Alkali-Aggregate Reaction, Sao Paulo, Brazil.
  • Pradhan, P., Dwibedy, S., Pradhan, M., Panda, S., Panigrahi, S.K., 2022. Durability Characteristics of Geopolymer Concrete - Progress and Perspectives. Journal of Building Engineering 59, 105100. https://doi.org/10.1016/j.jobe.2022.105100
  • Shaikh, F.U.A., 2014. Effects of Alkali Solutions on Corrosion Durability of Geopolymer Concrete. Advances in Concrete Construction, 2, 109–123. https://doi.org/10.12989/ACC.2014.2.2.109
  • Shi, C., Shi, Z., Hu, X., Zhao, R., Chong, L., 2015. A Review on Alkali-Aggregate Reactions in Alkali-Activated Mortars/Concretes Made With Alkali-Reactive Aggregates. Materials and Structures 48, 621–628. https://doi.org/10.1617/s11527-014-0505-2
  • Shi, S., Li, H., Fabian, M., Sun, T., Grattan, K.T.V., Xu, D., Basheer, P.A.M., Bai, Y., 2016. Alkali-Activated Fly Ash Manufactured with Multi-stage Microwave Curing, Fourth International Conference on Sustainable Construction Materials and Technologies, Las Vegas, USA.
  • Somaratna, J., Ravikumar, D., Neithalath, N., 2010. Response of alkali activated fly ash mortars to microwave curing, Cement and Concrete Research 40, 1688–1696. https://doi.org/10.1016/j.cemconres.2010.08.010
  • Thompson, A., Saha, A.K., Sarker, P.K., 2019. Comparison of the Alkali-Silica Reactions of Ferronickel Slag Aggregate in Fly Ash Geopolymer and Cement Mortars. European Journal of Environmental and Civil Engineering 26, 891–904. https://doi.org/10.1080/19648189.2019.1686068
  • Yang, K., Yang, C., Magee, B., Nanukuttan, S., Ye, J., 2016. Establishment of a Preconditioning Regime for Air Permeability and Sorptivity of Alkali-Activated Slag Concrete. Cement and Concrete Composites 73, 19–28. https://doi.org/10.1016/j.cemconcomp.2016.06.019
  • Zhang, B., 2024. Durability of Low-carbon Geopolymer Concrete: A Critical Review. Sustainable Materials and Technologies 40, e00882. https://doi.org/10.1016/j.susmat.2024.e00882
  • Zhao, R., Sanjayan, J.G., 2011. Geopolymer and Portland Cement Concretes in Simulated Fire. Magazine of Concrete Research 63, 163–173. https://doi.org/10.1680/macr.9.00110
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapı Malzemeleri
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Adil Gültekin 0000-0002-5267-5312

Kambiz Ramyar 0000-0003-2200-2691

Proje Numarası 119M950
Yayımlanma Tarihi 25 Aralık 2024
Gönderilme Tarihi 25 Nisan 2024
Kabul Tarihi 10 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 4

Kaynak Göster

APA Gültekin, A., & Ramyar, K. (2024). FARKLI KÜR YÖNTEMLERİYLE ÜRETİLEN GEOPOLİMER HARÇLARIN BAZI DURABİLİTE ÖZELLİKLERİNİN ÇİMENTO HARÇLARIYLA KIYASLANMASI. Mühendislik Bilimleri Ve Tasarım Dergisi, 12(4), 821-834. https://doi.org/10.21923/jesd.1473561