Araştırma Makalesi
BibTex RIS Kaynak Göster

GÖMÜLÜ SABİT MIKNATISLI SENKRON MOTOR SÜRÜCÜ TASARIMI: KLİMA SİSTEMLERİNDE KULLANILAN FAN YÜKÜ UYGULAMASI

Yıl 2025, Cilt: 13 Sayı: 1, 185 - 201, 20.03.2025
https://doi.org/10.21923/jesd.1510194

Öz

Gömülü sabit mıknatıslı senkron motorlar (GSMSM), verimlerinin yüksek olması, yüksek güç yoğunluğuna sahip olmaları, düşük bakım gerektirmeleri, hızlı tepki süreleri ve yüksek dinamik performansına sahip olmalarından dolayı fan, pompa ve iklimlendirme gibi endüstriyel uygulamalarda son yıllarda yaygın olarak kullanılmaya başlamıştır. Bu motorların kontrolü için gerçek zamanlı konum ve hız bilgisi sensörlerden elde edilmektedir. Sensörlerin maliyeti, ağırlıkları ve hacimleri, güvenirliği ve dayanımları gibi durumlardan dolayı gömülü SMSM larda sensörsüz kontrol yöntemleri araştırmacılar için ilgi odağı haline gelmiştir.
Bu çalışmada, araçlardaki klima sistemlerinde kullanılmak üzere gömülü sabit mıknatıslı senkron motorların performansını ve verimini artırmak için hem motor sürücü tasarımı hem de motorun sensörsüz kontrolüne ait uygulama gerçekleştirilmiştir. Gömülü SMSM’ un hız kontrolünde alan yönlendirmeli kontrol yöntemi kullanılmıştır. Düşük maliyet, dayanıklık ve iyi performans elde edebilmek için Luenberger tipi sensörsüz kontrol yöntemi kullanılmıştır. Akım ve gerilim bilgileri kullanılarak Zıt-EMK yöntemi ile gömülü SMSM' un rotor konumu ve hız bilgisi elde edilmiştir. Gömülü SMSM klasik iki-seviyeli inverter tarafından beslenmiştir. İnverterdeki yarıiletken güç anahtarların kontrolü için uzay vektör darbe genişlik modülasyon tekniği kullanılmıştır. Deneysel sonuçlar, önerilen sensörsüz kontrol tekniğinin gömülü SMSM’ ları için endüstriyel fan uygulamalarında yüksek performans gösterdiğini doğrulamaktadır.

Kaynakça

  • Aydogmus, O., & Sünter, S. (2012). Implementation of EKF based sensorless drive system using vector controlled PMSM fed by a matrix converter. International Journal of Electrical Power & Energy Systems, 43(1), 736-743.
  • Elmas, C., & Ustun, O. (2008). A hybrid controller for the speed control of a permanent magnet synchronous motor drive. Control Engineering Practice, 16(3), 260-270.
  • Saleh, S. A., Ozkop, E., Nahid-Mobarakeh, B., Rubaai, A., Muttaqi, K. M., & Pradhan, S. (2023). Survivability-Based Protection for Electric Motor Drive Systems-Part II: Three Phase Permanent Magnet Synchronous Motor Drives. IEEE Transactions on Industry Applications. 59(3), 2760 – 2771.
  • Krishnan, R. (1987). Selection criteria for servo motor drives. IEEE Transactions on Industry Applications, IA-23(2), 270-275.
  • Huang, Q., Huang, Q., Guo, H., & Cao, J. (2023). Design and research of permanent magnet synchronous motor controller for electric vehicle. Energy Science & Engineering, 11(1), 112-126.
  • Wang, Q., Wang, S., & Chen, C. (2019). Review of sensorless control techniques for PMSM drives. IEEJ Transactions on electrical and electronic engineering, 14(10), 1543-1552.
  • Sen, P. C. (1990). Electric motor drives and control-past, present, and future. IEEE Transactions on Industrial Electronics, 37(6), 562-575.
  • Güngör, B., Özgenel, M.C., & Demirbaş, Ş. (2010). Dynamic analysis of vector controlled permanent magnet synchronous motor driven with SPWM inverter. Journal of the Faculty of Engineering & Architecture of Gazi University, 25(3), 569-577.
  • Murakami, H., Honda, Y., Kiriyama, H., Morimoto, S., & Takeda, Y. (1999, October). The performance comparison of SPMSM, IPMSM and SynRM in use as air-conditioning compressor. In Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No. 99CH36370) (Vol. 2, pp. 840-845). IEEE.
  • Broeck HW, Skudelny HC, Stanke GV. “Analysis and realization of a pulsewidth modulator based on voltage space vectors”. IEEE Transactions on Industry Applications, 24 (1), 142-150, 1988.
  • Kanchan RS, Baiju MR, Mohapatra KK, Ouseph PP, Gopakumar K. “Space vector PWM signal generation for multilevel inverters using only the sampled amplitudes of reference phase voltages”. Electric Power Applications, IEE Proceedings, 152 (2), 297-309, 2005.
  • Jung, W. S., Lee, H. K., Lee, Y. K., Kim, S. M., Lee, J. I., & Choi, J. Y. (2023). Analysis and Comparison of Permanent Magnet Synchronous Motors According to Rotor Type under the Same Design Specifications. Energies, 16(3), 1306.
  • Piippo, A., Hinkkanen, M., & Luomi, J. (2009). Adaptation of motor parameters in sensorless PMSM drives. IEEE Transactions on Industry Applications, 45(1), 203-212.
  • Volpato Filho, C. J., Xiao, D., Vieira, R. P., & Emadi, A. (2021). Observers for high-speed sensorless pmsm drives: Design methods, tuning challenges and future trends. IEEE Access, 9, 56397-56415. Digital Object Identifier 10.1109/ACCESS.2021.3072360.
  • Wang, G., Valla, M., & Solsona, J. (2019). Position sensorless permanent magnet synchronous machine drives—A review. IEEE Transactions on Industrial Electronics, 67(7), 5830-5842. Digital Object Identifier 10.1109/TIE.2019.2955409.
  • Genduso, F., Miceli, R., Rando, C., & Galluzzo, G. R. (2010). Back EMF sensorless-control algorithm for high-dynamic performance PMSM. IEEE Transactions on Industrial Electronics, 57(6), 2092-2100.
  • Noguchi, T. (2007). Trends of permanent‐magnet synchronous machine drives. IEEJ Transactions on Electrical and Electronic Engineering, 2(2), 125-142.
  • Rahman, M. A., Milasi, R. M., Lucas, C., Araabi, B. N., & Radwan, T. S. (2008). Implementation of emotional controller for interior permanent-magnet synchronous motor drive. IEEE Transactions on Industry Applications, 44(5), 1466-1476.
  • Ni, R., Xu, D., Blaabjerg, F., Lu, K., Wang, G., & Zhang, G. (2017). Square-wave voltage injection algorithm for PMSM position sensorless control with high robustness to voltage errors. IEEE Transactions on Power Electronics, 32(7), 5425-5437.
  • Song, X., Fang, J., Han, B., & Zheng, S. (2016). Adaptive compensation method for high-speed surface PMSM sensorless drives of EMF-based position estimation error. IEEE Transactions on Power Electronics, 31(2), 1438-1449.
  • Zhang, G., Wang, G., & Xu, D. (2017). Saliency-based position sensorless control methods for PMSM drives-A review. Chinese Journal of Electrical Engineering, 3(2), 14-23.
  • Zhang, X., Li, H., Yang, S., & Ma, M. (2017). Improved initial rotor position estimation for PMSM drives based on HF pulsating voltage signal injection. IEEE Transactions on Industrial Electronics, 65(6), 4702-4713.
  • Zhang, H., Zhang, G., Shen, W., Wang, G., & Xu, D. (2020, November). Fundamental PWM Excitation Based Low-Speed Sensorless Control Method for PMSM Drives. In 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA) (pp. 833-838).
  • Kim, S. I., Im, J. H., Song, E. Y., & Kim, R. Y. (2016). A new rotor position estimation method of IPMSM using all-pass filter on high-frequency rotating voltage signal injection. IEEE Transactions on Industrial Electronics, 63(10), 6499-6509.
  • Luo, X., Tang, Q., Shen, A., & Zhang, Q. (2015). PMSM sensorless control by injecting HF pulsating carrier signal into estimated fixed-frequency rotating reference frame. IEEE Transactions on Industrial Electronics, 63(4), 2294-2303.
  • Schroedl, M. (1996, October). Sensorless control of AC machines at low speed and standstill based on the" INFORM" method. In IAS'96. Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting (Vol. 1, pp. 270-277).
  • Borsje, P., Chan, T. F., Wong, Y. K., & Ho, S. L. (2005, May). A comparative study of Kalman filtering for sensorless control of a permanent-magnet synchronous motor drive. In IEEE International Conference on Electric Machines and Drives, 2005. (pp. 815-822).
  • Quang, N. K., Hieu, N. T., & Ha, Q. P. (2014). FPGA-based sensorless PMSM speed control using reduced-order extended Kalman filters. IEEE transactions on Industrial Electronics, 61(12), 6574-6582.
  • Abo‐Khalil, A. G., Eltamaly, A. M., Alsaud, M. S., Sayed, K., & Alghamdi, A. S. (2021). Sensorless control for PMSM using model reference adaptive system. International Transactions on Electrical Energy Systems, 31(2), e12733.
  • Yan, H., Xu, Y., Cai, F., Zhang, H., Zhao, W., & Gerada, C. (2018). PWM-VSI fault diagnosis for a PMSM drive based on the fuzzy logic approach. IEEE Transactions on Power Electronics, 34(1), 759-768.
  • Ullah, K., Guzinski, J., & Mirza, A. F. (2022). Critical review on robust speed control techniques for permanent magnet synchronous motor (PMSM) speed regulation. Energies, 15(3), 1235.
  • Zhang, Z. (2022). Sensorless Control of Synchronous Machines Using Fundamental Back-EMF Voltage-A Review. IEEE Transactions on Power Electronics, 37(9), 10290-10305.
  • Wang, Z., Lu, K., & Blaabjerg, F. (2012). A simple startup strategy based on current regulation for back-EMF-based sensorless control of PMSM. IEEE Transactions on Power Electronics, 27(8), 3817-3825.
  • Vidlak, M., Makys, P., & Gorel, L. (2022). A Novel Constant Power Factor Loop for Stable V/f Control of PMSM in Comparison against Sensorless FOC with Luenberger-Type Back-EMF Observer Verified by Experiments. Applied Sciences, 12(18), 9179.

INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVER DESIGN: FAN LOAD APPLICATION USED IN AIR CONDITIONING SYSTEMS

Yıl 2025, Cilt: 13 Sayı: 1, 185 - 201, 20.03.2025
https://doi.org/10.21923/jesd.1510194

Öz

Interior permanent magnet synchronous motors (IPMSMs) have gained significant popularity for industrial applications such as fans, pumps, and air conditioning system, owing to their high efficiency, power density, low maintenance, quick response, and dynamic performance. For controlling these motors, real-time position and speed data are typically obtained via sensors. However, the associated costs, added weight, increased volume, and potential reliability issues have driven interest in sensorless control methods for IPMSMs.
This study aims to enhance the performance and efficiency of an IPMSM designed for automotive air conditioning systems, in which involves the implementation of both motor driver design and sensorless control. The field-oriented control (FOC) method is employed for the speed control of the IPMSM. To maintain low costs and ensure durability and high performance, a Luenberger-type sensorless control method is used. The rotor position and speed information are derived using the Back-EMF method, based on current and voltage data. The IPMSM is driven by a conventional two-level inverter, with the SVPWM technique managing the semiconductor power switches. Experimental results confirm that proposed sensorless control technique of IPMSMs conducted the high performance in industrial fan applications.

Kaynakça

  • Aydogmus, O., & Sünter, S. (2012). Implementation of EKF based sensorless drive system using vector controlled PMSM fed by a matrix converter. International Journal of Electrical Power & Energy Systems, 43(1), 736-743.
  • Elmas, C., & Ustun, O. (2008). A hybrid controller for the speed control of a permanent magnet synchronous motor drive. Control Engineering Practice, 16(3), 260-270.
  • Saleh, S. A., Ozkop, E., Nahid-Mobarakeh, B., Rubaai, A., Muttaqi, K. M., & Pradhan, S. (2023). Survivability-Based Protection for Electric Motor Drive Systems-Part II: Three Phase Permanent Magnet Synchronous Motor Drives. IEEE Transactions on Industry Applications. 59(3), 2760 – 2771.
  • Krishnan, R. (1987). Selection criteria for servo motor drives. IEEE Transactions on Industry Applications, IA-23(2), 270-275.
  • Huang, Q., Huang, Q., Guo, H., & Cao, J. (2023). Design and research of permanent magnet synchronous motor controller for electric vehicle. Energy Science & Engineering, 11(1), 112-126.
  • Wang, Q., Wang, S., & Chen, C. (2019). Review of sensorless control techniques for PMSM drives. IEEJ Transactions on electrical and electronic engineering, 14(10), 1543-1552.
  • Sen, P. C. (1990). Electric motor drives and control-past, present, and future. IEEE Transactions on Industrial Electronics, 37(6), 562-575.
  • Güngör, B., Özgenel, M.C., & Demirbaş, Ş. (2010). Dynamic analysis of vector controlled permanent magnet synchronous motor driven with SPWM inverter. Journal of the Faculty of Engineering & Architecture of Gazi University, 25(3), 569-577.
  • Murakami, H., Honda, Y., Kiriyama, H., Morimoto, S., & Takeda, Y. (1999, October). The performance comparison of SPMSM, IPMSM and SynRM in use as air-conditioning compressor. In Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No. 99CH36370) (Vol. 2, pp. 840-845). IEEE.
  • Broeck HW, Skudelny HC, Stanke GV. “Analysis and realization of a pulsewidth modulator based on voltage space vectors”. IEEE Transactions on Industry Applications, 24 (1), 142-150, 1988.
  • Kanchan RS, Baiju MR, Mohapatra KK, Ouseph PP, Gopakumar K. “Space vector PWM signal generation for multilevel inverters using only the sampled amplitudes of reference phase voltages”. Electric Power Applications, IEE Proceedings, 152 (2), 297-309, 2005.
  • Jung, W. S., Lee, H. K., Lee, Y. K., Kim, S. M., Lee, J. I., & Choi, J. Y. (2023). Analysis and Comparison of Permanent Magnet Synchronous Motors According to Rotor Type under the Same Design Specifications. Energies, 16(3), 1306.
  • Piippo, A., Hinkkanen, M., & Luomi, J. (2009). Adaptation of motor parameters in sensorless PMSM drives. IEEE Transactions on Industry Applications, 45(1), 203-212.
  • Volpato Filho, C. J., Xiao, D., Vieira, R. P., & Emadi, A. (2021). Observers for high-speed sensorless pmsm drives: Design methods, tuning challenges and future trends. IEEE Access, 9, 56397-56415. Digital Object Identifier 10.1109/ACCESS.2021.3072360.
  • Wang, G., Valla, M., & Solsona, J. (2019). Position sensorless permanent magnet synchronous machine drives—A review. IEEE Transactions on Industrial Electronics, 67(7), 5830-5842. Digital Object Identifier 10.1109/TIE.2019.2955409.
  • Genduso, F., Miceli, R., Rando, C., & Galluzzo, G. R. (2010). Back EMF sensorless-control algorithm for high-dynamic performance PMSM. IEEE Transactions on Industrial Electronics, 57(6), 2092-2100.
  • Noguchi, T. (2007). Trends of permanent‐magnet synchronous machine drives. IEEJ Transactions on Electrical and Electronic Engineering, 2(2), 125-142.
  • Rahman, M. A., Milasi, R. M., Lucas, C., Araabi, B. N., & Radwan, T. S. (2008). Implementation of emotional controller for interior permanent-magnet synchronous motor drive. IEEE Transactions on Industry Applications, 44(5), 1466-1476.
  • Ni, R., Xu, D., Blaabjerg, F., Lu, K., Wang, G., & Zhang, G. (2017). Square-wave voltage injection algorithm for PMSM position sensorless control with high robustness to voltage errors. IEEE Transactions on Power Electronics, 32(7), 5425-5437.
  • Song, X., Fang, J., Han, B., & Zheng, S. (2016). Adaptive compensation method for high-speed surface PMSM sensorless drives of EMF-based position estimation error. IEEE Transactions on Power Electronics, 31(2), 1438-1449.
  • Zhang, G., Wang, G., & Xu, D. (2017). Saliency-based position sensorless control methods for PMSM drives-A review. Chinese Journal of Electrical Engineering, 3(2), 14-23.
  • Zhang, X., Li, H., Yang, S., & Ma, M. (2017). Improved initial rotor position estimation for PMSM drives based on HF pulsating voltage signal injection. IEEE Transactions on Industrial Electronics, 65(6), 4702-4713.
  • Zhang, H., Zhang, G., Shen, W., Wang, G., & Xu, D. (2020, November). Fundamental PWM Excitation Based Low-Speed Sensorless Control Method for PMSM Drives. In 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA) (pp. 833-838).
  • Kim, S. I., Im, J. H., Song, E. Y., & Kim, R. Y. (2016). A new rotor position estimation method of IPMSM using all-pass filter on high-frequency rotating voltage signal injection. IEEE Transactions on Industrial Electronics, 63(10), 6499-6509.
  • Luo, X., Tang, Q., Shen, A., & Zhang, Q. (2015). PMSM sensorless control by injecting HF pulsating carrier signal into estimated fixed-frequency rotating reference frame. IEEE Transactions on Industrial Electronics, 63(4), 2294-2303.
  • Schroedl, M. (1996, October). Sensorless control of AC machines at low speed and standstill based on the" INFORM" method. In IAS'96. Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting (Vol. 1, pp. 270-277).
  • Borsje, P., Chan, T. F., Wong, Y. K., & Ho, S. L. (2005, May). A comparative study of Kalman filtering for sensorless control of a permanent-magnet synchronous motor drive. In IEEE International Conference on Electric Machines and Drives, 2005. (pp. 815-822).
  • Quang, N. K., Hieu, N. T., & Ha, Q. P. (2014). FPGA-based sensorless PMSM speed control using reduced-order extended Kalman filters. IEEE transactions on Industrial Electronics, 61(12), 6574-6582.
  • Abo‐Khalil, A. G., Eltamaly, A. M., Alsaud, M. S., Sayed, K., & Alghamdi, A. S. (2021). Sensorless control for PMSM using model reference adaptive system. International Transactions on Electrical Energy Systems, 31(2), e12733.
  • Yan, H., Xu, Y., Cai, F., Zhang, H., Zhao, W., & Gerada, C. (2018). PWM-VSI fault diagnosis for a PMSM drive based on the fuzzy logic approach. IEEE Transactions on Power Electronics, 34(1), 759-768.
  • Ullah, K., Guzinski, J., & Mirza, A. F. (2022). Critical review on robust speed control techniques for permanent magnet synchronous motor (PMSM) speed regulation. Energies, 15(3), 1235.
  • Zhang, Z. (2022). Sensorless Control of Synchronous Machines Using Fundamental Back-EMF Voltage-A Review. IEEE Transactions on Power Electronics, 37(9), 10290-10305.
  • Wang, Z., Lu, K., & Blaabjerg, F. (2012). A simple startup strategy based on current regulation for back-EMF-based sensorless control of PMSM. IEEE Transactions on Power Electronics, 27(8), 3817-3825.
  • Vidlak, M., Makys, P., & Gorel, L. (2022). A Novel Constant Power Factor Loop for Stable V/f Control of PMSM in Comparison against Sensorless FOC with Luenberger-Type Back-EMF Observer Verified by Experiments. Applied Sciences, 12(18), 9179.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Makineleri ve Sürücüler
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Buğra Er 0000-0002-3982-5654

Okan Bingöl 0000-0001-9817-7266

Yayımlanma Tarihi 20 Mart 2025
Gönderilme Tarihi 3 Temmuz 2024
Kabul Tarihi 8 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 1

Kaynak Göster

APA Er, B., & Bingöl, O. (2025). INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVER DESIGN: FAN LOAD APPLICATION USED IN AIR CONDITIONING SYSTEMS. Mühendislik Bilimleri Ve Tasarım Dergisi, 13(1), 185-201. https://doi.org/10.21923/jesd.1510194