BİLİNMEYEN MARKOV ATLAMALI SİSTEMLERİN MODELLEMESİ VE ERGEN KİMLİK ARAMA ALGORİTMASI İLE AYARLANMIŞ PID KONTROLÜ
Yıl 2025,
Cilt: 13 Sayı: 1, 1 - 16, 20.03.2025
Bedrı Bahtıyar
,
Meric Cetin
,
Selami Beyhan
Öz
Markov atlama sistemlerinin (Markov Jump System–MJS), bilinmeyen dinamikler, rastgele geçişler ve çevresel gürültüler nedeniyle denetlenmesi zordur. Bu makalede, gerçek zamanlı doğrusal MJS'ler optimizasyon yöntemleri kullanılarak genel modelleme ve denetim performansını iyileştirmek için gözden geçirilmiştir. Bu çalışmayla elde edilen katkılar iki başlıkta değerlendirilmektedir: i) gerçek zamanlı bir RLC devresinden toplanan veriler kullanılarak kara-kutu tanımlama, ii) oransal-integral-türev (Proportional-Integral-Derivative - PID) denetleyicinin tasarımında sezgisel optimizasyon yöntemi olan Ergen Kimliği Arama algoritmasının (AISA) ilk kez kullanımı. Bu amaçla, bilinmeyen MJ'lerin dinamiklerini modellemek ve tahmin etmek için bir Aşırı Öğrenme Makinesi (Extreme Learning Machine- ELM) modeli oluşturulmuştur. Ardından, yığın optimizasyon içerisinde ELM modeli kullanılarak en uygun PID parametreleri kümesi bulunmuştur. Denetleyicinin parametrelerini optimize etmek için literatürde yaygın olarak kullanılan meta-sezgisel algoritmalar AISA ile karşılaştırılmıştır. Simülasyon sonuçlarına göre en iyi uygunluk değerine en kısa sürede ulaşan AISA ile gerçek zamanlı PID denetleyicisine ait parametreler 0.005 hata oranı ile tahmin edilmiştir. Önerilen yaklaşım, Markov davranışı sergileyen deneysel bir RLC devresinin modellenmesi ve denetimi için uygulanmıştır.
Etik Beyan
Yazarlar makalenin kendi çalışmaları olduğunu, hiçbir şekilde intihal yapmadıklarını, intihalden doğan tüm sorumlulukların kendilerine ait olduğunu, bu konuda derginin hiçbir sorumluluğunun olmadığını beyan eder.
Sorumlu yazar makalede adı geçen tüm ortak yazarların yayına ve ortak yazar olarak adlandırılmaya razı olduğunu garanti eder.
Destekleyen Kurum
Pamukkale Üniversitesi Bilimsel Araştırma Projeleri Konseyi
Proje Numarası
2021HZDP021
Teşekkür
Bu makale Pamukkale Üniversitesi Bilimsel Araştırma Projeleri Konseyi tarafından 2021HZDP021 numaralı hibe kapsamında finanse edilmiştir.
Kaynakça
- Abd-Elazim S.M., Ali E. S., 2018. Load frequency controller design of a two-area system composing of PV grid and thermal generator via firefly algorithm. Neural Computing and Applications, 30, 607-616.
- Ang K.H., Chong G., Li Y., 2005. PID control system analysis, design, and technology, IEEE Transactions on Control Systems Technology, 13(4), 559-576.
- Astrom K.J., Hagglund T., 1995. PID controllers: theory, design, and tuning, ISA-The Instrumentation, Systems and Automation Society.
- Beyhan S., Alci M., 2010. Stable modeling-based control methods using a new RBF network, ISA Transactions, 49(4), 510-518.
- Bogar E., Beyhan S., 2020. Adolescent identity search algorithm (AISA): A novel metaheuristic approach for solving optimization problems, Applied Soft Computing, 95, 106503.
- Cetin M., Bahtiyar B., Beyhan S., 2019. Adaptive uncertainty compensation-based nonlinear model predictive control with real-time applications. Neural Computing and Applications, 31, 1029-1043.
- Cetin M., Iplikci S., 2015. A novel auto-tuning PID control mechanism for nonlinear systems, ISA Transactions, 58, 292-308.
- Cetintas G., Hamamci S.E., 2022. Proportional-integral-derivative stabilization of complex conjugate-order systems, Transactions of the Institute of Measurement and Control, 44(15), 2941-2952.
- Chang W.D., Yan J.J., 2005. Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems, Chaos, Solitons and Fractals, 26(1), 167-175.
- Chiou J.S., Tsai S.H., Liu M.T., 2012. A PSO-based adaptive fuzzy PID-controllers, Simulation Modelling Practice and Theory, 26, 49-59.
- Deng L., Liu S., 2023. A novel hybrid grasshopper optimization algorithm for numerical and engineering optimization problems, Neural Process Letters, 1-55.
- Fang M., Shi P., Dong S., 2019. Sliding mode control for Markov jump systems with delays via asynchronous approach, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(5), 2916-2925.
- Hasan M.W., Abbas N.H., 2022. Disturbance rejection for underwater robotic vehicle based on adaptive fuzzy with nonlinear PID controller, ISA Transactions, 130, 360-376
- Hekimoğlu B., 2019. Optimal tuning of fractional order PID controller for DC motor speed control via chaotic atom search optimization algorithm. IEEE Access, 7, 38100-38114.
- Huang G.B., Zhu Q.Y., Siew C.K., 2004. Extreme learning machine: a new learning scheme of feedforward neural networks, IEEE International Joint Conference on Neural Networks, 2, 985-990.
- Huang G.B., Zhu Q.Y., Siew C.K., 2006. Extreme learning machine: theory and applications, Neurocomputing, 70(1-3), 489-501.
- Izci D., Ekinci S., 2023. Optimizing Three-Tank Liquid Level Control: Insights from Prairie Dog Optimization. International Journal of Robotics & Control Systems, 3(3).
- Joseph S.B., Dada E.G., Abidemi A., 2022. Oyewola D.O., Khammas B.M. Metaheuristic algorithms for PID controller parameters tuning: Review, approaches and open problems. Heliyon, 8(5), e09399.
- Kang J., Meng W., Abraham A., Liu H., 2014. An adaptive PID neural network for complex nonlinear system control, Neurocomputing, 135, 79-85.
- Kang Y., Zhao Y.B., Zhao P., 2018. Stability analysis of Markovian jump systems. Springer.
- Karaboga D., Basturk B., 2007. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, Journal of Global Optimization, 39(3), 459-471.
- Kennedy J., Eberhart R., 1995. Particle swarm optimization. In Proceedings of ICNN'95-International Conference on Neural Networks, 4, 1942-1948.
- Lennartson B., Kristiansson B., 2009. Evaluation and tuning of robust PID controllers, IET Control Theory and Applications, 3(3), 294-302.
- Mirjalili S., Lewis A., 2016. The whale optimization algorithm, Advances in Engineering Software, 95, 51-67.
- Mirjalili S., Mirjalili S.M., Lewis A., 2014. Grey wolf optimizer, Advances in Engineering Software, 69, 46-61.
- Özay C.A.N., Eroğlu H., Öztürk, A., 2022. FV-termal güç sistemlerinde balina optimizasyon algoritması tabanlı otomatik üretim kontrolörü. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(2), 915-926.
- Paul S., Yu W., Li X., 2018. Bidirectional active control of structures with type-2 fuzzy PD and PID, International Journal of Systems Science, 49(4), 766-782.
- Qi Z., Shi Q., Zhang H., 2019. Tuning of digital PID controllers using particle swarm optimization algorithm for a CAN-based DC motor subject to stochastic delays. IEEE Transactions on Industrial Electronics, 67(7), 5637-5646.
- Saravanakumar R., Ali M.S., 2022. Extended dissipative criteria for generalized Markovian jump neural networks including asynchronous mode-dependent delayed states, Neural Process Letters, 54, 1623-1645.
- Van M., 2018. An enhanced robust fault tolerant control based on an adaptive fuzzy PID-nonsingular fast terminal sliding mode control for uncertain nonlinear systems, IEEE/ASME Transactions on Mechatronics, 23(3), 1362-1371.
- Vargas A.N., Pujol G., Acho L., 2017. Stability of Markov jump systems with quadratic terms and its application to RLC circuits, Journal of the Franklin Institute, 354(1), 332-344.
- Vincent A.K., Nersisson R., 2017. Particle swarm optimization based PID controller tuning for level control of two tank system. In IOP Conference Series: Materials Science and Engineering, 263, (5).
- Zhang X., Zhang G., Yin Y., He S., 2021. Asynchronous sliding mode dissipative control for discrete-time Markov jump systems with application to automotive electronic throttle body control system, Computers and Electrical Engineering, 96, 107496.
- Zhu M., Chen Y., Kong Y., Chen C., Bai J., 2020. Distributed filtering for Markov jump systems with randomly occurring one-sided Lipschitz nonlinearities under Round-Robin scheduling, Neurocomputing, 417, 396-405.
- Ziegler J.G., Nichols N.B., 1942. Optimum settings for automatic controllers, Transaction ASME, 64(11), 759-768.
MODELLING OF UNKNOWN MARKOV JUMP SYSTEMS AND PID CONTROL TUNED BY ADOLESCENT IDENTITY SEARCH ALGORITHM
Yıl 2025,
Cilt: 13 Sayı: 1, 1 - 16, 20.03.2025
Bedrı Bahtıyar
,
Meric Cetin
,
Selami Beyhan
Öz
Markov jump systems (MJS) are difficult to control due to unknown dynamics, random transitions and environmental noises. In this paper, real-time linear MJSs are reviewed to improve general modeling and control performance using meta-heuristic optimization methods. Contributions are twofold as: i) black-box identification using collected data from a real-time RLC circuit, ii) first use of the Adolescent Identity Search algorithm (AISA), which is a meta-heuristic optimization method in the design of a proportional-integral-derivative (PID) controller. For this purpose, an Extreme Learning Machine (ELM) model is constructed to model and predict the dynamics of unknown MJs. Then, the optimal set of PID parameters are found using the ELM model in batch optimization. To optimize the parameters of the controller, meta-heuristic algorithms commonly used in the literature are compared with AISA. According to the simulation results, the parameters of the real-time PID controller have been estimated with an error rate of 0.005 with AISA, which achieved the best fittness value in the shortest time. The proposed approach is applied to model and control an experimental RLC circuit with Markovian behavior.
Proje Numarası
2021HZDP021
Kaynakça
- Abd-Elazim S.M., Ali E. S., 2018. Load frequency controller design of a two-area system composing of PV grid and thermal generator via firefly algorithm. Neural Computing and Applications, 30, 607-616.
- Ang K.H., Chong G., Li Y., 2005. PID control system analysis, design, and technology, IEEE Transactions on Control Systems Technology, 13(4), 559-576.
- Astrom K.J., Hagglund T., 1995. PID controllers: theory, design, and tuning, ISA-The Instrumentation, Systems and Automation Society.
- Beyhan S., Alci M., 2010. Stable modeling-based control methods using a new RBF network, ISA Transactions, 49(4), 510-518.
- Bogar E., Beyhan S., 2020. Adolescent identity search algorithm (AISA): A novel metaheuristic approach for solving optimization problems, Applied Soft Computing, 95, 106503.
- Cetin M., Bahtiyar B., Beyhan S., 2019. Adaptive uncertainty compensation-based nonlinear model predictive control with real-time applications. Neural Computing and Applications, 31, 1029-1043.
- Cetin M., Iplikci S., 2015. A novel auto-tuning PID control mechanism for nonlinear systems, ISA Transactions, 58, 292-308.
- Cetintas G., Hamamci S.E., 2022. Proportional-integral-derivative stabilization of complex conjugate-order systems, Transactions of the Institute of Measurement and Control, 44(15), 2941-2952.
- Chang W.D., Yan J.J., 2005. Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems, Chaos, Solitons and Fractals, 26(1), 167-175.
- Chiou J.S., Tsai S.H., Liu M.T., 2012. A PSO-based adaptive fuzzy PID-controllers, Simulation Modelling Practice and Theory, 26, 49-59.
- Deng L., Liu S., 2023. A novel hybrid grasshopper optimization algorithm for numerical and engineering optimization problems, Neural Process Letters, 1-55.
- Fang M., Shi P., Dong S., 2019. Sliding mode control for Markov jump systems with delays via asynchronous approach, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(5), 2916-2925.
- Hasan M.W., Abbas N.H., 2022. Disturbance rejection for underwater robotic vehicle based on adaptive fuzzy with nonlinear PID controller, ISA Transactions, 130, 360-376
- Hekimoğlu B., 2019. Optimal tuning of fractional order PID controller for DC motor speed control via chaotic atom search optimization algorithm. IEEE Access, 7, 38100-38114.
- Huang G.B., Zhu Q.Y., Siew C.K., 2004. Extreme learning machine: a new learning scheme of feedforward neural networks, IEEE International Joint Conference on Neural Networks, 2, 985-990.
- Huang G.B., Zhu Q.Y., Siew C.K., 2006. Extreme learning machine: theory and applications, Neurocomputing, 70(1-3), 489-501.
- Izci D., Ekinci S., 2023. Optimizing Three-Tank Liquid Level Control: Insights from Prairie Dog Optimization. International Journal of Robotics & Control Systems, 3(3).
- Joseph S.B., Dada E.G., Abidemi A., 2022. Oyewola D.O., Khammas B.M. Metaheuristic algorithms for PID controller parameters tuning: Review, approaches and open problems. Heliyon, 8(5), e09399.
- Kang J., Meng W., Abraham A., Liu H., 2014. An adaptive PID neural network for complex nonlinear system control, Neurocomputing, 135, 79-85.
- Kang Y., Zhao Y.B., Zhao P., 2018. Stability analysis of Markovian jump systems. Springer.
- Karaboga D., Basturk B., 2007. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, Journal of Global Optimization, 39(3), 459-471.
- Kennedy J., Eberhart R., 1995. Particle swarm optimization. In Proceedings of ICNN'95-International Conference on Neural Networks, 4, 1942-1948.
- Lennartson B., Kristiansson B., 2009. Evaluation and tuning of robust PID controllers, IET Control Theory and Applications, 3(3), 294-302.
- Mirjalili S., Lewis A., 2016. The whale optimization algorithm, Advances in Engineering Software, 95, 51-67.
- Mirjalili S., Mirjalili S.M., Lewis A., 2014. Grey wolf optimizer, Advances in Engineering Software, 69, 46-61.
- Özay C.A.N., Eroğlu H., Öztürk, A., 2022. FV-termal güç sistemlerinde balina optimizasyon algoritması tabanlı otomatik üretim kontrolörü. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(2), 915-926.
- Paul S., Yu W., Li X., 2018. Bidirectional active control of structures with type-2 fuzzy PD and PID, International Journal of Systems Science, 49(4), 766-782.
- Qi Z., Shi Q., Zhang H., 2019. Tuning of digital PID controllers using particle swarm optimization algorithm for a CAN-based DC motor subject to stochastic delays. IEEE Transactions on Industrial Electronics, 67(7), 5637-5646.
- Saravanakumar R., Ali M.S., 2022. Extended dissipative criteria for generalized Markovian jump neural networks including asynchronous mode-dependent delayed states, Neural Process Letters, 54, 1623-1645.
- Van M., 2018. An enhanced robust fault tolerant control based on an adaptive fuzzy PID-nonsingular fast terminal sliding mode control for uncertain nonlinear systems, IEEE/ASME Transactions on Mechatronics, 23(3), 1362-1371.
- Vargas A.N., Pujol G., Acho L., 2017. Stability of Markov jump systems with quadratic terms and its application to RLC circuits, Journal of the Franklin Institute, 354(1), 332-344.
- Vincent A.K., Nersisson R., 2017. Particle swarm optimization based PID controller tuning for level control of two tank system. In IOP Conference Series: Materials Science and Engineering, 263, (5).
- Zhang X., Zhang G., Yin Y., He S., 2021. Asynchronous sliding mode dissipative control for discrete-time Markov jump systems with application to automotive electronic throttle body control system, Computers and Electrical Engineering, 96, 107496.
- Zhu M., Chen Y., Kong Y., Chen C., Bai J., 2020. Distributed filtering for Markov jump systems with randomly occurring one-sided Lipschitz nonlinearities under Round-Robin scheduling, Neurocomputing, 417, 396-405.
- Ziegler J.G., Nichols N.B., 1942. Optimum settings for automatic controllers, Transaction ASME, 64(11), 759-768.