Araştırma Makalesi
BibTex RIS Kaynak Göster

ANALYSIS OF BENDING AND SPRINGBACK BEHAVIOUR OF AA5754 ALLOY USING THE THREE-POINT BENDING TEST

Yıl 2025, Cilt: 13 Sayı: 1, 144 - 154, 20.03.2025
https://doi.org/10.21923/jesd.1529078

Öz

In this study, the bending behavior of AA5754 aluminum alloy was investigated using the three-point bending test. The three-point bending test is a method used to understand the elastic and plastic deformation behaviors of materials and to evaluate their hardness and strength properties. Experiments were conducted with different punch radii (3, 5, 7 mm), deformation speeds (2, 5, 10 mm/min), punch distances (30, 40, 50 mm), and rolling directions (0° and 90°) to examine their effects on springback. In manufacturing engineering, springback is a critical issue and refers to the change in angle of the material when the punch force is removed during the forming of sheet metal materials. Springback measurements were performed using a universal protractor and image processing techniques. According to the experimental data obtained, increasing the punch distance led to an increase in springback. While increasing the punch radius along the rolling direction did not significantly affect springback, increasing the punch radius in the transverse direction resulted in greater springback. The effect of punch speed on springback was found to be limited. Minimum springback was observed in bending processes performed with a 3 mm punch radius, a deformation speed of 10 mm/min, and in the rolling direction. This study demonstrates the impact of various parameters on springback during the bending process.

Proje Numarası

MMF.A4.23.008

Kaynakça

  • Almeida, C. O. L., Santos, O. J. P. d., Panziera, R. C., Dutra, M. K., Pereira, M. and Pereira, M. d. S. 2023. Analysis of the springback effect of laser welded DP600 high-strength steel thin sheets, Journal of Laser Applications, 35 (4), 042045.
  • Altan, T. and Tekkaya, A. E. 2012. Sheet metal forming: processes and applications, ASM international.
  • Beigpour, R., Shokrollahi, H. and Khalili, S. M. R. 2021. Experimental and numerical analysis of a biodegradable hybrid composite under tensile and three-point bending tests, Composite Structures, 273 (0), 114255.
  • Berkant, D. 2021. Three-point bending properties of V-notched aluminum repaired with a nanocomposite patch, Emerging Materials Research, 10 (3), 300-306.
  • Birro, T. V., Aufray, M., Paroissien, E. and Lachaud, F. 2021. Assessment of interface failure behaviour for brittle adhesive using the three-point bending test, International Journal of Adhesion and Adhesives, 110 (0), 102891.
  • Boljanovic, V. 2004. Sheet metal forming processes and die design, Industrial Press Inc.
  • Bruni, C., Forcellese, A., Gabrielli, F. and Simoncini, M. 2006. Air bending of AZ31 magnesium alloy in warm and hot forming conditions, Journal of Materials Processing Technology, 177 (1-3), 373-376.
  • Chang, Y., Wang, N., Wang, B. T., Li, X. D., Wang, C. Y., Zhao, K. M. and Dong, H. 2021. Prediction of bending springback of the medium-Mn steel considering elastic modulus attenuation, Journal of Manufacturing Processes, 67 (0), 345-355.
  • Chatti, S., Dirksen, U. and Kleiner, M. 2004. Optimization of the design and manufacturing process of bent profiles, Journal of the Mechanical Behavior of Materials, 15 (6), 437-444.
  • Chen, T., Jiang, Q., Xue, J., Harvey, C. M., Zhang, X., Silberschmidt, V. V., Liu, Y., Zhang, K., Wang, S. and Wei, B. 2023. Dynamic three-point bending tests under high loading rates, Thin-Walled Structures, 188 (0), 110836.
  • Choi, M. K. and Huh, H. 2014. Effect of punch speed on amount of springback in U-bending process of auto-body steel sheets, Procedia Engineering, 81 963-968.
  • Dessie, J. E. and Lukacs, Z. 2023. Determination of influential springback parameters in U-bending test, Pollack Periodica, 18 (2), 17-22.
  • Gao, S., SUN, Y., LI, Q., YING, L., HAO, Z. and ZHANG, B. 2023. Multi-point 3D Hot Stretch-Bending Process of Titanium Alloy Profiles and Their Microstructure Evolution, China Mechanical Engineering, 34 (24), 2986.
  • Geiger, M., Engel, U. and Vom Ende, A. 1991. Investigations on the sheet bending process with elastic tools, Journal of Materials Processing Technology, 27 (1-3), 265-277.
  • Georgantzia, E., Gkantou, M. and Kamaris, G. S. 2021. Aluminium alloys as structural material: A review of research, Engineering Structures, 227 (0), 111372.
  • Goel, A., Vengatesh, T. P., Jerald, J. and Satheeshkumar, V. 2023. Influence of spot welding in adhesive bonded steel sheets on formability and springback, Materials Today: Proceedings, 90 (1), 156-163.
  • Hajiahmadi, S., Naeini, H. M., Talebi-Ghadikolaee, H., Safdarian, R. and Zeinolabedin-Beygi, A. 2023. Effect of anisotropy on spring-back of pre-punched profiles in cold roll forming process: an experimental and numerical investigation, The International Journal of Advanced Manufacturing Technology, 129 (9), 3965-3978.
  • Harizi, W., Anjoul, J., Acosta Santamaría, V. A., Aboura, Z. and Briand, V. 2021. Mechanical behavior of carbon-reinforced thermoplastic sandwich composites with several core types during three-point bending tests, Composite Structures, 262 (0), 113590.
  • Hosford, W. F. and Caddell, R. M. 2011. Metal forming: mechanics and metallurgy, Cambridge university press.
  • Inamdar, M. V., Date, P. P. and Sabnis, S. V. 2002. On the effects of geometric parameters on springback in sheets of five materials subjected to air vee bending, Journal of Materials Processing Technology, 123 (3), 459-463.
  • Jeong, K., Jeong, Y., Lee, J., Chung, G., Kim, G.-h. and Yoon, J. 2024. Experimental correlation between bending crack evolution and load-drop criterion in tight-radius three-point bending test with GPa-grade steels, International Journal of Solids and Structures, 301 (0), 112949.
  • Jindra, D., Kala, Z., Kala, J. and Seitl, S. 2021. Experimental and Numerical simulation of a Three Point Bending Test of a Stainless Steel Beam, Transportation Research Procedia, 55 1114-1121.
  • Kamal, A. H., Ghazaly, N., Abdellah, M. Y., Seleem, A.-E. H. A. and Abdel-Jaber, G. T. 2023. Influence Parameters on the Essential Work of Fracture of 5754-H111 Aluminum Alloy Plate: Comparative Study, SVU-International Journal of Engineering Sciences and Applications, 4 (2), 243-259.
  • Kazemi, F., Hashemi, R. and Niknam, S. A. 2022. Formability and fractography of AA5754/polyethylene/AA5754 sandwich composites, Mechanics Based Design of Structures and Machines, 50 (4), 1253-1267.
  • Kilic, S. 2019. Experimental and numerical investigation of the effect of different temperature and deformation speeds on mechanical properties and springback behaviour in Al-Zn-Mg-Cu alloy, Mechanics, 25 (5), 406-412.
  • Kilic, S. and Ozturk, F. 2017. Evaluation of Formability Under Different Deformation Modes for TWIP900 Steel, Journal of Engineering Materials and Technology, 139 (3),
  • Kılıç, S. and Demirdöğen, M. F. 2024. Görüntü işleme yöntemi ile geri esnemenin otomatik ölçümü: Deneysel bir yaklaşım, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13 (3), 785-791.
  • Kožar, I., Sulovsky, T., Plovanić, M. and Božić, Ž. 2023. Verification of a displacement model for three-point bending test, Procedia Structural Integrity, 46 (0), 143-148.
  • Kümmel, F., Diepold, B., Prakash, A., Höppel, H. W. and Göken, M. 2018. Enhanced monotonic and cyclic mechanical properties of ultrafine-grained laminated metal composites with strong and stiff interlayers, International Journal of Fatigue, 116 (0), 379-387.
  • Laurent, H., Grèze, R., Oliveira, M. C., Menezes, L. F., Manach, P. Y. and Alves, J. L. 2010. Numerical study of springback using the split-ring test for an AA5754 aluminum alloy, Finite Elements in Analysis and Design, 46 (9), 751-759.
  • Li, G., He, Z., Ma, J., Yang, H. and Li, H. 2021. Springback Analysis for Warm Bending of Titanium Tube Based on Coupled Thermal-Mechanical Simulation, Materials, 14 (17), 5044.
  • Li, X., Wang, R., Jiang, H., Zhang, K., Lou, S., Su, C. and Sun, J. 2024. Multipass roll forming of variable-curvature elliptical panels using the angular function based on UOSDM, Thin-Walled Structures, (0), 111759.
  • Liu, Y., Ma, Z., Liu, X., Wang, Z., Zhang, Z. and Liu, X. 2023. Ductile-to-brittle transition behavior of Fe-6.5 wt%Si alloy with three-point bending testing, Materials Characterization, 200 (0), 112861.
  • Liu, Y., Ma, Z., Liu, X. and Zhang, Z. 2023. Effect of grain size and grain boundary on ductile to brittle transition behavior of Fe-6.5wt.%Si alloy under miniaturized three-point bending tests, Materials Letters, 353 (0), 135288.
  • Liu, Y., Wang, L., Zhu, B., Wang, Y. and Zhang, Y. 2018. Identification of two aluminum alloys and springback behaviors in cold bending, Procedia Manufacturing, 15 (0), 701-708.
  • Liu, Z.-w., Li, L.-x., Jie, Y., Li, S.-k., Wang, Z.-h. and Guan, W. 2017. Influence of heat treatment conditions on bending characteristics of 6063 aluminum alloy sheets, Transactions of Nonferrous Metals Society of China, 27 (7), 1498-1506.
  • Macwan, A., Mirza, F., Bhole, S. and Chen, D. L. Year. Similar and dissimilar ultrasonic spot welding of 5754 aluminum alloy for automotive applications, Materials Science Forum, 561-568.
  • Mohammadtabar, N., Bakhshi-Jooybari, M., Gorji, H., Jamaati, R. and Szpunar, J. A. 2021. Effect of electric current pulse type on springback, microstructure, texture, and mechanical properties during V-bending of AA2024 aluminum alloy, Journal of Manufacturing Science and Engineering, 143 (1), 011004.
  • Moni, V. 2020. Mechanical properties of friction stir welded 5083-h321 and 6082-t651 dissimilar aluminium alloys. Cape Peninsula University of Technology,
  • Monkova, K., Monka, P. P., Žaludek, M., Beňo, P., Hricová, R. and Šmeringaiová, A. 2023. Experimental Study of the Bending Behaviour of the Neovius Porous Structure Made Additively from Aluminium Alloy, Aerospace, 10 (4), 361.
  • Nagasaka, A., Hojo, T., Kobayashi, J. and Tabata, C. Year. Warm V-Bending and Hydrogen Embrittlement Properties of Ultrahigh-Strength TRIP-Aided Bainitic Ferrite Steel Sheets, International Conference on the Technology of Plasticity, 436-444.
  • Özdemir, M. 2020. Optimization of spring back in air v bending processing using Taguchi and RSM method, Mechanics, 26 (1), 73-81.
  • Paik, J. K., van der Veen, S., Duran, A. and Collette, M. 2005. Ultimate compressive strength design methods of aluminum welded stiffened panel structures for aerospace, marine and land-based applications: A benchmark study, Thin-Walled Structures, 43 (10), 1550-1566.
  • Ren, H., Li, T., Ning, J. and Song, S. 2023. Bending damage and fractal characteristics of steel fiber-reinforced concrete under three-point bending test, Construction and Building Materials, 409 (0), 134053.
  • Sargeant, D., Sarkar, M. Z., Sharma, R., Knezevic, M., Fullwood, D. T. and Miles, M. P. 2023. Effect of pre-strain on springback behavior after bending in AA 6016-T4: Experiments and crystal plasticity modeling, International Journal of Solids and Structures, 283 (0), 112485.
  • Sarkar, J., Kutty, T., Conlon, K., Wilkinson, D., Embury, J. and Lloyd, D. 2001. Tensile and bending properties of AA5754 aluminum alloys, Materials Science and Engineering: A, 316 (1-2), 52-59.
  • Sert, A., Gürgen, S., Çelik, O. N. and Kuşhan, M. C. 2017. Effect of heat treatment on the bending behavior of aluminum alloy tubes, Journal of Mechanical Science and Technology, 31 (0), 5273-5278.
  • Setiawan, H., Nopriyanti, R. and Selvi Novita, S. Year. Analysis of the Effect of AISI 1005 Grain Structure and Cutting Angle on Springback Using the V-Bending Method, Proceedings of the 5th International Conference on Applied Science and Technology on Engineering Science (567-572.
  • Seyed Jafari, P., Hashemi, R., Kazemi, F. and Pourmorad Kaleybar, S. 2021. An experimental investigation of mechanical properties, forming limit curves, and bending behavior of aluminum-polymer sandwich composites, Materials Research Express, 8 (8), 086516.
  • Sofuoğlu, M. A., Gürgen, S., Çakır, F. H. and Orak, S. 2017. Springback Behavior of AA6082T6 Tubes in Three-point Bending Operation, Procedia Engineering, 182 (0), 658-664.
  • Sudhakar, U. and Srinivas, J. 2021. Chapter Three - Sustainable friction stir welding of metals. In: KUMAR, K., ZINDANI, D. & DAVIM, J. P. (eds.) Sustainable Manufacturing and Design. Woodhead Publishing.
  • Suyuti, M. A., Iswar, M. and Nur, R. 2019. Effect of Punch Parameters on Springback for Mild Carbon Steel in A V-Shape Bending Process, IOP Conference Series: Materials Science and Engineering, 541 (1), 012015.
  • Taktak, W., Taktak, R., Haddar, N. and Elleuch, R. 2017. Study of the influence of cold working on mechanical behavior and ductile fracture of 5754 aluminum alloy: experimental and numerical simulations, Journal of Theoretical and Applied Mechanics, 55 (3), 923-935.
  • Tiryakioğlu, M. F. 2013. AA 2024 ve AL 5754 sac metal malzemelerde bükme esnasında oluşan geri esneme miktarının deneysel verilerle matematiksel olarak modellenmesi.
  • Toros, S., Kilic, S. and Ozturk, F. 2011. The Effects of Material Thickness and Deformation Speed on Springback Behavior of DP600 Steel, Advanced Materials Research, 264 (0), 636-645.
  • Trzepieciński, T. and Lemu, H. G. 2020. Improving Prediction of Springback in Sheet Metal Forming Using Multilayer Perceptron-Based Genetic Algorithm, Materials, 13 (14), 3129.
  • Václavík, J., Dopierala, L. and Chvojan, J. 2024. Investigations of the Hybrid Beam Behavior during the Three-point Bending Test, Procedia Structural Integrity, 54 (0), 294-299.
  • Vorkov, V., Aerens, R., Vandepitte, D. and Duflou, J. R. 2017. Experimental investigation of large radius air bending, The International Journal of Advanced Manufacturing Technology, 92 (0), 3553-3569.
  • Wang, A., Zhong, K., El Fakir, O., Sun, C., Liu, J. and Wang, L.-L. 2020. Springback Analysis of AA5754 under Warm Stamping Conditions, Engineering Science & Technology, 1 (1), 1-53.
  • Xia, F., Durandet, Y., Tan, P. and Ruan, D. 2022. Three-point bending performance of sandwich panels with various types of cores, Thin-Walled Structures, 179 (0), 109723.
  • Yoshihara, H. and Tsunematsu, S. 2006. Feasibility of estimation methods for measuring Young's modulus of wood by three-point bending test, Materials and structures, 39 (0), 29-36.
  • Yu, M., Wei, C., Niu, L., Li, S. and Yu, Y. 2018. Calculation for tensile strength and fracture toughness of granite with three kinds of grain sizes using three-point-bending test, PLOS ONE, 13 (3), e0180880.
  • Yuri, T., Ogata, T., Saito, M. and Hirayama, Y. 2001. Effect of welding structure on high-cycle and low-cycle fatigue properties for MIG welded A5083 aluminum alloys at cryogenic temperatures, Cryogenics, 41 (7), 475-483.
  • Zang, S.-l., Lee, M.-G., Sun, L. and Kim, J. H. 2014. Measurement of the Bauschinger behavior of sheet metals by three-point bending springback test with pre-strained strips, International Journal of Plasticity, 59 (0), 84-107.
  • Zeng, X., Wen, S., Li, M. and Xie, G. 2014. Estimating Young’s Modulus of Materials by a New Three‐Point Bending Method, Advances in Materials Science and Engineering, 2014 (1), 189423.
  • Zhang, F., Ruan, J., Zhang, J., He, K. and Du, R. 2018. Experimental study of springback behavior in incremental bending process, Procedia Manufacturing, 15 (0), 1290-1297.
  • Zhao, D., Du, P. and Liu, J. 2023. Design on multi-station progressive die for automobile reinforcement plate, Forging & Stamping Technology, 48 (8), 219-223.
  • Zhou, B., Liu, B. and Zhang, S. 2021. The Advancement of 7XXX Series Aluminum Alloys for Aircraft Structures: A Review, Metals, 11 (5), 718.

AA5754 ALAŞIMININ ÜÇ NOKTA EĞME TESTİ İLE EĞİLME VE GERİ ESNEME DAVRANIŞININ ANALİZİ

Yıl 2025, Cilt: 13 Sayı: 1, 144 - 154, 20.03.2025
https://doi.org/10.21923/jesd.1529078

Öz

Bu çalışmada, AA5754 alüminyum alaşımının eğilme davranışı üç nokta eğme testi kullanılarak araştırılmıştır. Üç nokta eğme testi, malzemelerin elastik ve plastik deformasyon davranışlarını anlaşılması, sertlik ve mukavemet özelliklerini değerlendirilmesi amacıyla kullanılan bir test yöntemidir. Farklı zımba yarıçapları (3, 5, 7 mm), deformasyon hızları (2, 5, 10 mm/dak), zımba mesafeleri (30, 40, 50 mm) ve hadde yönleri (0° ve 90°) kullanılarak yapılan deneylerde, bu parametrelerin geri esneme üzerindeki etkileri incelenmiştir. İmalat mühendisliğinde kritik bir konu olan geri esneme, sac metal malzemelerin şekillendirilmesi sırasında zımba kuvvetinin kaldırılmasıyla malzemede meydana gelen açı değişimidir. Geri esneme ölçümleri, evrensel açı ölçer ve görüntü işleme teknikleri kullanılarak yapılmıştır. Elde edilen deneysel verilere göre, zımba mesafesinin artırılması geri esnemenin artmasına neden olmuştur. Zımba yarıçapının haddeleme yönü boyunca artırılması geri esnemeyi önemli ölçüde etkilemezken, numunelerin haddeleme yönüne dik yönde zımba yarıçapının artırılması daha büyük geri esnemeye neden olmuştur. Zımba hızının geri esneme üzerindeki etkisi ise sınırlı düzeyde bulunmuştur. Minimum geri esneme, 3 mm zımba yarıçapı, 10 mm/dak deformasyon hızı ve hadde yönünde yapılan eğme işlemlerinde gözlemlenmiştir. Bu çalışma eğme işlemindeki parametrelerin geri esneme üzerindeki etkisini göstermektedir.

Destekleyen Kurum

Bu çalışma Kırşehir Ahi Evran Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimince Desteklenmiştir.

Proje Numarası

MMF.A4.23.008

Kaynakça

  • Almeida, C. O. L., Santos, O. J. P. d., Panziera, R. C., Dutra, M. K., Pereira, M. and Pereira, M. d. S. 2023. Analysis of the springback effect of laser welded DP600 high-strength steel thin sheets, Journal of Laser Applications, 35 (4), 042045.
  • Altan, T. and Tekkaya, A. E. 2012. Sheet metal forming: processes and applications, ASM international.
  • Beigpour, R., Shokrollahi, H. and Khalili, S. M. R. 2021. Experimental and numerical analysis of a biodegradable hybrid composite under tensile and three-point bending tests, Composite Structures, 273 (0), 114255.
  • Berkant, D. 2021. Three-point bending properties of V-notched aluminum repaired with a nanocomposite patch, Emerging Materials Research, 10 (3), 300-306.
  • Birro, T. V., Aufray, M., Paroissien, E. and Lachaud, F. 2021. Assessment of interface failure behaviour for brittle adhesive using the three-point bending test, International Journal of Adhesion and Adhesives, 110 (0), 102891.
  • Boljanovic, V. 2004. Sheet metal forming processes and die design, Industrial Press Inc.
  • Bruni, C., Forcellese, A., Gabrielli, F. and Simoncini, M. 2006. Air bending of AZ31 magnesium alloy in warm and hot forming conditions, Journal of Materials Processing Technology, 177 (1-3), 373-376.
  • Chang, Y., Wang, N., Wang, B. T., Li, X. D., Wang, C. Y., Zhao, K. M. and Dong, H. 2021. Prediction of bending springback of the medium-Mn steel considering elastic modulus attenuation, Journal of Manufacturing Processes, 67 (0), 345-355.
  • Chatti, S., Dirksen, U. and Kleiner, M. 2004. Optimization of the design and manufacturing process of bent profiles, Journal of the Mechanical Behavior of Materials, 15 (6), 437-444.
  • Chen, T., Jiang, Q., Xue, J., Harvey, C. M., Zhang, X., Silberschmidt, V. V., Liu, Y., Zhang, K., Wang, S. and Wei, B. 2023. Dynamic three-point bending tests under high loading rates, Thin-Walled Structures, 188 (0), 110836.
  • Choi, M. K. and Huh, H. 2014. Effect of punch speed on amount of springback in U-bending process of auto-body steel sheets, Procedia Engineering, 81 963-968.
  • Dessie, J. E. and Lukacs, Z. 2023. Determination of influential springback parameters in U-bending test, Pollack Periodica, 18 (2), 17-22.
  • Gao, S., SUN, Y., LI, Q., YING, L., HAO, Z. and ZHANG, B. 2023. Multi-point 3D Hot Stretch-Bending Process of Titanium Alloy Profiles and Their Microstructure Evolution, China Mechanical Engineering, 34 (24), 2986.
  • Geiger, M., Engel, U. and Vom Ende, A. 1991. Investigations on the sheet bending process with elastic tools, Journal of Materials Processing Technology, 27 (1-3), 265-277.
  • Georgantzia, E., Gkantou, M. and Kamaris, G. S. 2021. Aluminium alloys as structural material: A review of research, Engineering Structures, 227 (0), 111372.
  • Goel, A., Vengatesh, T. P., Jerald, J. and Satheeshkumar, V. 2023. Influence of spot welding in adhesive bonded steel sheets on formability and springback, Materials Today: Proceedings, 90 (1), 156-163.
  • Hajiahmadi, S., Naeini, H. M., Talebi-Ghadikolaee, H., Safdarian, R. and Zeinolabedin-Beygi, A. 2023. Effect of anisotropy on spring-back of pre-punched profiles in cold roll forming process: an experimental and numerical investigation, The International Journal of Advanced Manufacturing Technology, 129 (9), 3965-3978.
  • Harizi, W., Anjoul, J., Acosta Santamaría, V. A., Aboura, Z. and Briand, V. 2021. Mechanical behavior of carbon-reinforced thermoplastic sandwich composites with several core types during three-point bending tests, Composite Structures, 262 (0), 113590.
  • Hosford, W. F. and Caddell, R. M. 2011. Metal forming: mechanics and metallurgy, Cambridge university press.
  • Inamdar, M. V., Date, P. P. and Sabnis, S. V. 2002. On the effects of geometric parameters on springback in sheets of five materials subjected to air vee bending, Journal of Materials Processing Technology, 123 (3), 459-463.
  • Jeong, K., Jeong, Y., Lee, J., Chung, G., Kim, G.-h. and Yoon, J. 2024. Experimental correlation between bending crack evolution and load-drop criterion in tight-radius three-point bending test with GPa-grade steels, International Journal of Solids and Structures, 301 (0), 112949.
  • Jindra, D., Kala, Z., Kala, J. and Seitl, S. 2021. Experimental and Numerical simulation of a Three Point Bending Test of a Stainless Steel Beam, Transportation Research Procedia, 55 1114-1121.
  • Kamal, A. H., Ghazaly, N., Abdellah, M. Y., Seleem, A.-E. H. A. and Abdel-Jaber, G. T. 2023. Influence Parameters on the Essential Work of Fracture of 5754-H111 Aluminum Alloy Plate: Comparative Study, SVU-International Journal of Engineering Sciences and Applications, 4 (2), 243-259.
  • Kazemi, F., Hashemi, R. and Niknam, S. A. 2022. Formability and fractography of AA5754/polyethylene/AA5754 sandwich composites, Mechanics Based Design of Structures and Machines, 50 (4), 1253-1267.
  • Kilic, S. 2019. Experimental and numerical investigation of the effect of different temperature and deformation speeds on mechanical properties and springback behaviour in Al-Zn-Mg-Cu alloy, Mechanics, 25 (5), 406-412.
  • Kilic, S. and Ozturk, F. 2017. Evaluation of Formability Under Different Deformation Modes for TWIP900 Steel, Journal of Engineering Materials and Technology, 139 (3),
  • Kılıç, S. and Demirdöğen, M. F. 2024. Görüntü işleme yöntemi ile geri esnemenin otomatik ölçümü: Deneysel bir yaklaşım, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13 (3), 785-791.
  • Kožar, I., Sulovsky, T., Plovanić, M. and Božić, Ž. 2023. Verification of a displacement model for three-point bending test, Procedia Structural Integrity, 46 (0), 143-148.
  • Kümmel, F., Diepold, B., Prakash, A., Höppel, H. W. and Göken, M. 2018. Enhanced monotonic and cyclic mechanical properties of ultrafine-grained laminated metal composites with strong and stiff interlayers, International Journal of Fatigue, 116 (0), 379-387.
  • Laurent, H., Grèze, R., Oliveira, M. C., Menezes, L. F., Manach, P. Y. and Alves, J. L. 2010. Numerical study of springback using the split-ring test for an AA5754 aluminum alloy, Finite Elements in Analysis and Design, 46 (9), 751-759.
  • Li, G., He, Z., Ma, J., Yang, H. and Li, H. 2021. Springback Analysis for Warm Bending of Titanium Tube Based on Coupled Thermal-Mechanical Simulation, Materials, 14 (17), 5044.
  • Li, X., Wang, R., Jiang, H., Zhang, K., Lou, S., Su, C. and Sun, J. 2024. Multipass roll forming of variable-curvature elliptical panels using the angular function based on UOSDM, Thin-Walled Structures, (0), 111759.
  • Liu, Y., Ma, Z., Liu, X., Wang, Z., Zhang, Z. and Liu, X. 2023. Ductile-to-brittle transition behavior of Fe-6.5 wt%Si alloy with three-point bending testing, Materials Characterization, 200 (0), 112861.
  • Liu, Y., Ma, Z., Liu, X. and Zhang, Z. 2023. Effect of grain size and grain boundary on ductile to brittle transition behavior of Fe-6.5wt.%Si alloy under miniaturized three-point bending tests, Materials Letters, 353 (0), 135288.
  • Liu, Y., Wang, L., Zhu, B., Wang, Y. and Zhang, Y. 2018. Identification of two aluminum alloys and springback behaviors in cold bending, Procedia Manufacturing, 15 (0), 701-708.
  • Liu, Z.-w., Li, L.-x., Jie, Y., Li, S.-k., Wang, Z.-h. and Guan, W. 2017. Influence of heat treatment conditions on bending characteristics of 6063 aluminum alloy sheets, Transactions of Nonferrous Metals Society of China, 27 (7), 1498-1506.
  • Macwan, A., Mirza, F., Bhole, S. and Chen, D. L. Year. Similar and dissimilar ultrasonic spot welding of 5754 aluminum alloy for automotive applications, Materials Science Forum, 561-568.
  • Mohammadtabar, N., Bakhshi-Jooybari, M., Gorji, H., Jamaati, R. and Szpunar, J. A. 2021. Effect of electric current pulse type on springback, microstructure, texture, and mechanical properties during V-bending of AA2024 aluminum alloy, Journal of Manufacturing Science and Engineering, 143 (1), 011004.
  • Moni, V. 2020. Mechanical properties of friction stir welded 5083-h321 and 6082-t651 dissimilar aluminium alloys. Cape Peninsula University of Technology,
  • Monkova, K., Monka, P. P., Žaludek, M., Beňo, P., Hricová, R. and Šmeringaiová, A. 2023. Experimental Study of the Bending Behaviour of the Neovius Porous Structure Made Additively from Aluminium Alloy, Aerospace, 10 (4), 361.
  • Nagasaka, A., Hojo, T., Kobayashi, J. and Tabata, C. Year. Warm V-Bending and Hydrogen Embrittlement Properties of Ultrahigh-Strength TRIP-Aided Bainitic Ferrite Steel Sheets, International Conference on the Technology of Plasticity, 436-444.
  • Özdemir, M. 2020. Optimization of spring back in air v bending processing using Taguchi and RSM method, Mechanics, 26 (1), 73-81.
  • Paik, J. K., van der Veen, S., Duran, A. and Collette, M. 2005. Ultimate compressive strength design methods of aluminum welded stiffened panel structures for aerospace, marine and land-based applications: A benchmark study, Thin-Walled Structures, 43 (10), 1550-1566.
  • Ren, H., Li, T., Ning, J. and Song, S. 2023. Bending damage and fractal characteristics of steel fiber-reinforced concrete under three-point bending test, Construction and Building Materials, 409 (0), 134053.
  • Sargeant, D., Sarkar, M. Z., Sharma, R., Knezevic, M., Fullwood, D. T. and Miles, M. P. 2023. Effect of pre-strain on springback behavior after bending in AA 6016-T4: Experiments and crystal plasticity modeling, International Journal of Solids and Structures, 283 (0), 112485.
  • Sarkar, J., Kutty, T., Conlon, K., Wilkinson, D., Embury, J. and Lloyd, D. 2001. Tensile and bending properties of AA5754 aluminum alloys, Materials Science and Engineering: A, 316 (1-2), 52-59.
  • Sert, A., Gürgen, S., Çelik, O. N. and Kuşhan, M. C. 2017. Effect of heat treatment on the bending behavior of aluminum alloy tubes, Journal of Mechanical Science and Technology, 31 (0), 5273-5278.
  • Setiawan, H., Nopriyanti, R. and Selvi Novita, S. Year. Analysis of the Effect of AISI 1005 Grain Structure and Cutting Angle on Springback Using the V-Bending Method, Proceedings of the 5th International Conference on Applied Science and Technology on Engineering Science (567-572.
  • Seyed Jafari, P., Hashemi, R., Kazemi, F. and Pourmorad Kaleybar, S. 2021. An experimental investigation of mechanical properties, forming limit curves, and bending behavior of aluminum-polymer sandwich composites, Materials Research Express, 8 (8), 086516.
  • Sofuoğlu, M. A., Gürgen, S., Çakır, F. H. and Orak, S. 2017. Springback Behavior of AA6082T6 Tubes in Three-point Bending Operation, Procedia Engineering, 182 (0), 658-664.
  • Sudhakar, U. and Srinivas, J. 2021. Chapter Three - Sustainable friction stir welding of metals. In: KUMAR, K., ZINDANI, D. & DAVIM, J. P. (eds.) Sustainable Manufacturing and Design. Woodhead Publishing.
  • Suyuti, M. A., Iswar, M. and Nur, R. 2019. Effect of Punch Parameters on Springback for Mild Carbon Steel in A V-Shape Bending Process, IOP Conference Series: Materials Science and Engineering, 541 (1), 012015.
  • Taktak, W., Taktak, R., Haddar, N. and Elleuch, R. 2017. Study of the influence of cold working on mechanical behavior and ductile fracture of 5754 aluminum alloy: experimental and numerical simulations, Journal of Theoretical and Applied Mechanics, 55 (3), 923-935.
  • Tiryakioğlu, M. F. 2013. AA 2024 ve AL 5754 sac metal malzemelerde bükme esnasında oluşan geri esneme miktarının deneysel verilerle matematiksel olarak modellenmesi.
  • Toros, S., Kilic, S. and Ozturk, F. 2011. The Effects of Material Thickness and Deformation Speed on Springback Behavior of DP600 Steel, Advanced Materials Research, 264 (0), 636-645.
  • Trzepieciński, T. and Lemu, H. G. 2020. Improving Prediction of Springback in Sheet Metal Forming Using Multilayer Perceptron-Based Genetic Algorithm, Materials, 13 (14), 3129.
  • Václavík, J., Dopierala, L. and Chvojan, J. 2024. Investigations of the Hybrid Beam Behavior during the Three-point Bending Test, Procedia Structural Integrity, 54 (0), 294-299.
  • Vorkov, V., Aerens, R., Vandepitte, D. and Duflou, J. R. 2017. Experimental investigation of large radius air bending, The International Journal of Advanced Manufacturing Technology, 92 (0), 3553-3569.
  • Wang, A., Zhong, K., El Fakir, O., Sun, C., Liu, J. and Wang, L.-L. 2020. Springback Analysis of AA5754 under Warm Stamping Conditions, Engineering Science & Technology, 1 (1), 1-53.
  • Xia, F., Durandet, Y., Tan, P. and Ruan, D. 2022. Three-point bending performance of sandwich panels with various types of cores, Thin-Walled Structures, 179 (0), 109723.
  • Yoshihara, H. and Tsunematsu, S. 2006. Feasibility of estimation methods for measuring Young's modulus of wood by three-point bending test, Materials and structures, 39 (0), 29-36.
  • Yu, M., Wei, C., Niu, L., Li, S. and Yu, Y. 2018. Calculation for tensile strength and fracture toughness of granite with three kinds of grain sizes using three-point-bending test, PLOS ONE, 13 (3), e0180880.
  • Yuri, T., Ogata, T., Saito, M. and Hirayama, Y. 2001. Effect of welding structure on high-cycle and low-cycle fatigue properties for MIG welded A5083 aluminum alloys at cryogenic temperatures, Cryogenics, 41 (7), 475-483.
  • Zang, S.-l., Lee, M.-G., Sun, L. and Kim, J. H. 2014. Measurement of the Bauschinger behavior of sheet metals by three-point bending springback test with pre-strained strips, International Journal of Plasticity, 59 (0), 84-107.
  • Zeng, X., Wen, S., Li, M. and Xie, G. 2014. Estimating Young’s Modulus of Materials by a New Three‐Point Bending Method, Advances in Materials Science and Engineering, 2014 (1), 189423.
  • Zhang, F., Ruan, J., Zhang, J., He, K. and Du, R. 2018. Experimental study of springback behavior in incremental bending process, Procedia Manufacturing, 15 (0), 1290-1297.
  • Zhao, D., Du, P. and Liu, J. 2023. Design on multi-station progressive die for automobile reinforcement plate, Forging & Stamping Technology, 48 (8), 219-223.
  • Zhou, B., Liu, B. and Zhang, S. 2021. The Advancement of 7XXX Series Aluminum Alloys for Aircraft Structures: A Review, Metals, 11 (5), 718.
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Tasarım ve Davranışları, Makine Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Süleyman Kılıç 0000-0002-1681-9403

Mehmet Fatih Demirdöğen 0000-0002-0545-3733

Proje Numarası MMF.A4.23.008
Yayımlanma Tarihi 20 Mart 2025
Gönderilme Tarihi 7 Ağustos 2024
Kabul Tarihi 25 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 1

Kaynak Göster

APA Kılıç, S., & Demirdöğen, M. F. (2025). AA5754 ALAŞIMININ ÜÇ NOKTA EĞME TESTİ İLE EĞİLME VE GERİ ESNEME DAVRANIŞININ ANALİZİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 13(1), 144-154. https://doi.org/10.21923/jesd.1529078