Araştırma Makalesi
BibTex RIS Kaynak Göster

THYMUS SIPYLEUS BOISS. EKSTRAKTI BAZLI BAKTERIYEL SELÜLOZ BIYOKOMPOZITLERININ ÜRETIMI VE KARAKTERIZASYONU

Yıl 2025, Cilt: 13 Sayı: 1, 165 - 176, 20.03.2025
https://doi.org/10.21923/jesd.1565246

Öz

Bu çalışmanın amacı Kombucha kültür ortamında ex situ modifikasyon ile üretilen bakteriyel selülozun (BC) antibakteriyel özelliklerini iyileştirmektir. Thymus sipyleus Boiss. bitkisinden elde edilen biyoaktif metanol özütü, BC'ye ex situ modifikasyonla eklenerek biyoaktif ve uygun maliyetli bir biyokompozit elde edilmiştir. SEM ve FTIR analizleri, nanofiberleri, gözenekli yapıyı ve özütün BC nanofiberleri ile kimyasal bağlanmasını doğruladı ve biyokompozitlerin başarıyla üretildiği kanıtlanmıştır. Biyokompozitlerde su tutma ve şişme davranışında önemli bir azalma gözlenmiştir. Biyokompozitlerin antibakteriyel aktivitesi AATC100-2004 yöntemine göre belirlenmiştir. Üretilen biyokompozitlerin bakterisidal aktiviteleri, gram pozitif bakteri Staphylococcus aureus ATCC 25923 ve gram negatif bakteri Escherichia coli ATCC 25922 ile karşılaştırılmıştır. Biyokompozit T010 (%0,10 ekstrakt) güçlü antibakteriyel aktivite göstererek E. coli'yi %84,6, S. aureus'u ise %97,54 oranında azaltmıştır. Bu çalışmanın sonuçları, T. sipyleus ekstraktının uygun konsantrasyonlarda etkili bir antibakteriyel ajan olarak kullanılabileceğini ve ex situ modifikasyonla üretilen BC biyokompozitinin mükemmel antibakteriyel özelliklere sahip olduğunu göstermektedir.

Proje Numarası

223M224

Kaynakça

  • Asanarong, O., Quan, V. M., Boonrungsiman, S., Sukyai, P., 2020. Bioactive Wound Dressing Using Bacterial Cellulose Loaded with Papain Composite. Morphology, Loading/Release And Antibacterial Properties. European Polymer Journal, 143, 110224.
  • Ashjaran, A., Yazdanshenas, M., Rashidi, A., Khajavi, R., Rezaee, A., 2013. Overview of Bio Nanofabric from Bacterial Cellulose. Journal of the Textile Institute, 104, 121–31.
  • Ashori, A., Sheykhnazari, S., Tabarsa, T., Shakeri, A., Golalipour, M., 2012. Bacterial Cellulose/Silica Nanocomposites: Preparation and Characterization. Carbohydrate Polymers, 90 (1), 413-418.
  • Barud, H. D. S., de Araújo Júnior, A. M., Saska, S., Mestieri, L. B., Campos, J. A. D. B., De Freitas, R. M., Berretta, A. A., 2013. Antimicrobial Brazilian Propolis (EPP‐AF) Containing Biocellulose Membranes as Promising Biomaterial for Skin Wound Healing. Evidence‐Based Complementary and Alternative Medicine, (1), 703024.
  • Beldjilali, M., Mekhissi, K., Khane, Y., Chaibi, W., Belarbi, L., Bousalem, S., 2020. Antibacterial and Antifungal Efficacy of Silver Nanoparticles Biosynthesized Using Leaf Extract of SİTU algeriensis. Journal of Inorganic and Organometallic Polymers and Materials, 30 (6), 2126-2133.
  • Bodea, I. M., Cătunescu, G. M., Pop, C. R., Fiț, N. I., David, A. P., Dudescu, M. C., Beteg, F. I., 2022. Antimicrobial Properties of Bacterial Cellulose Films Enriched With Bioactive Herbal Extracts Obtained by Microwave-Assisted Extraction. Polymers, 14 (7), 1435.
  • Boni, B. O. O., Lamboni, L., Bakadia, B. M., Hussein, S. A., Yang, G., 2020. Combining Silk Sericin and Surface Micropatterns in Bacterial Cellulose Dressings to Control Fibrosis and Enhance Wound Healing. Engineered Science, 10, 68-77.
  • Brown, A.J., 1886. XLIII. On an Acetic Ferment which forms Cellulose. Journal of the Chemical Society, 49, 432–439.
  • Cazón, P., Vázquez, M., 2021. Improving Bacterial Cellulose Films by Ex-Situ and İn-Situ Modifications. A review. Food Hydrocolloids, 113, 106514.
  • Chen, J., Chen, C., Liang, G., Xu, X., Hao, Q., Sun, D., 2019. In Situ Preparation of Bacterial Cellulose with Antimicrobial Properties from Bioconversion of Mulberry Leaves. Carbohydrate Polymers, 220, 170–175.
  • Cuce, M., 2022. Investigation of color, fastness, and antimicrobial properties of wool fabrics dyed with Rosa canina leaf extract. Journal of Natural Fibers, 19, 823-834.
  • Cuce, M., Kılınc, M., Kılınc, N., 2019. Investıgation of Color and Antimicrobial Properties of Wool Fabrics Dyed with Polygonum Cognatum Natural Dye Extracts. ‘In International 19 May Innovative Scientific Approaches Congress, Samsun, Turkey’, 1, 1211-24.
  • Cuce, M., Kilinc, M., Kilinc, N., Tekin, A., Kut, D., 2022. Color, Fastness, and Antimicrobial Properties of Wool Fabrics Dyed with Helichrysum arenarium Subsp. aucheri Extract. Journal of Natural Fibers, 19 (3), 797-809.
  • Cüce, M., Basançelebi, O., 2021. Comparison of Volatile Constituents, Antioxidant and Antimicrobial Activities of Thymus leucotrichus (Lamiaceae) Stem and Leaves Essential Oils from Both Natural Resources and In Vitro Derived Shoots. Journal of Essential Oil Bearing Plants, 24 (5), 1097-1112.
  • Du, R., Zhao, F., Peng Q., Zhou, Z., Han, Y., 2018. Production and Characterization of Bacterial Cellulose Produced by Gluconacetobacter xylinus İsolated from Chinese Persimmon Vinegar. Carbohydrate Polymers, 194, 200-207.
  • Elansary, H. O., Szopa, A., Kubica, P., Ekiert, H., Klimek-Szczykutowicz, M., El-Ansary, D. O., Mahmoud, E. A., 2020. Polyphenol Profile and Antimicrobial and Cytotoxic Activities of Natural Mentha× piperita And Mentha longifolia Populations İn Northern Saudi Arabia. Processes, 8, 1-17.
  • Elbouny, H., Ouahzizi, B., Bouhlali, E.D.T, Sellam, K., Alem, C., 2022. Pharmacological, Biological and Phytochemical aspects Of Thymus munbyanus Boiss. & Reut. A Review. Plant Science Today. 9, 399–404.
  • Fatima, A., Yasir, S., Khan M. S., Manan S., Ullah M. W., Ul-Islam M., 2021. Plant Extract-Loaded Bacterial Cellulose Composite Membrane for Potential Biomedical Applications. Journal of Bioresources and Bioproducts, 6, 26-32.
  • Fatima, A., Yasir, S., Ul-Islam, M., Kamal, T., Ahmad, M. W., Abbas, Y., Yang, G., 2022. Ex Situ Development and Characterization of Green Antibacterial Bacterial Cellulose-Based Composites for Potential Biomedical Applications. Advanced Composites and Hybrid Materials, 1-15.
  • Fernandes, I. D. A. A., Maciel, G. M., de Oliveira, A. L. M. S., Miorim, A. J. F., Fontana, J. D., Ribeiro, V. R., Haminiuk, C. W. I., 2020. Hybrid Bacterial Cellulose-Collagen Membranes Production in Culture Media Enriched with Antioxidant Compounds from Plant Extracts. Polymer Engineering & Science, 60, 2814-2826.
  • Gao, G., Niu, S., Li, T., Zhang, Y., Zha, X., Shi, Z., Ma, T., 2023. Fabrication of Bacterial Cellulose Composites with Antimicrobial Properties by İn Situ Modification Utilizing the Specific Function-Suspension Containing Water-İnsoluble Magnolol. International Journal of Biological Macromolecules, 239, 124329.
  • Gupte, Y., Kulkarni, A., Raut, B., Sarkar, P., Choudhury, R., Chawande, A., Dasgupta, S., 2021. Characterization of Nanocellulose Production by Strains of Komagataeibacter sp. İsolated from Organic Waste and Kombucha. Carbohydrate polymers, 266, 118176.
  • Han, J., Shim, E., Kim, H. R., 2019. Effects of Cultivation, Washing, and Bleaching Conditions on Bacterial Cellulose Fabric Production. Textile Research Journal, 89, 1094-1104.
  • Hungund, B, Siddhan, P, Basavaraj, H., 2016. Biosynthesis of Bacterial Cellulose and İmparting Antibacterial Property Through Novel Bio-Agents Biosynthesis of Bacterial Cellulose İmparting Antibacterial Property Through Novel Bio-Agents. Research Journal of Biotechnology, 11, 86–93.
  • İleri, T., Taşçı, F., Şahindokuyucu, F., 2010. Kombucha ve Sağlık Üzerine Etkileri. Uludag University Journal of the Faculty of Veterinary Medicine, 29, 69-77.
  • Jiji, S., Udhayakumar, S., Rose, C., Muralidharan, C., Kadirvelu, K., 2019. Thymol Enriched Bacterial Cellulose Hydrogel As Effective Material for Third Degree Burn Wound Repair. International journal of biological macromolecules, 122, 452-460.
  • Kamal, T., Ul-Islam, M., Khan, S. B., Bakhsh, E. M., & Chani, M. T. S., 2022. Development of plant extract impregnated bacterial cellulose as a green antimicrobial composite for potential biomedical applications. Industrial Crops and Products, 187, 115337.
  • Khattak, W.A., Khan, T., Ul-Islam, M., 2015. Production, Characterization and Physico-Mechanical Properties of Bacterial Cellulose from İndustrial Wastes. Journal of Polymers and the Environment, 23, 45–53.
  • Kilinc, M., Ay, E., Kut, D., 2022. Thermal, Chemical and Mechanical Properties of Regenerated Bacterial Cellulose Coated Cotton Fabric. Journal of Natural Fibers, 19, 7834-7851.
  • Kilinc, M., Canbolat, S., Merdan, N., Dayioglu, H., Akin, F., 2015. Investigation of The Color, Fastness and Antimicrobial Properties of Wool Fabrics Dyed with the Natural Dye Extracted from The Cone of Chamaecyparis lawsoniana. Procedia-Social and Behavioral Sciences, 195, 2152-2159.
  • Kilinc, N., Özdemir, Küçükçapraz, D., 2024. Production of Bacterial Cellulose Based on Bio Nonwoven / Nonwoven Composites for Medical Textile Applications. Textile and Apparel, 33, 357-365.
  • Klemm, D., Schumann, D., Kramer, F., Heßler, N., Hornung, M., Schmauder, H. P., Marsch, S., 2006. Nanocelluloses as İnnovative Polymers in Research and Application. İn ‘Polysaccharides İi’, (Ed(S).: Klemm D.), Springer, Germany, Vol. 1, 49-96.
  • Korkmaz, G., Kılınç, M., Kılınç, N., Kut, Y. D. 2023. The Role of Surface Modification Methods for Sustainable Textiles. In Roadmap to Sustainable Textiles. IntechOpen.
  • Kumar, M., Kumar, V., Saran, S., 2023. Efficient Production of Bacterial Cellulose Based Composites Using Zein Protein Extracted from Corn Gluten Meal. Journal of Food Science and Technology, 60, 1026-1035.
  • Li, X., He, T.; Wang, X., Shen, M., Yan, X., Fan, S., Wang, L., Wang, X., Xu, X., Sui, H., 2019. Traditional Uses, Chemical Constituents and Biological Activities of Plants from the Genus Thymus. Chemistry Biodiversity, 16, e1900254.
  • Li, Y., Guo, J., Li, M., Tang, Y., Murugadoss, V., Seok, I., Luo, Y., 2021. Recent Application of Cellulose Gel in Flexible Sensing a Review. ES Food Agroforestry, 4, 9-27.
  • Lin, W. C., Lien, C. C.,- Yeh, H. J., Yu, C.M., Hsu, S., 2013. Bacterial Cellulose and Bacterial Cellulose–Chitosan Membranes for Wound Dressing Applications. Carbohydrate Polymers, 94, 603–611.
  • Llorent-Martínez, E. J., Ruiz-Medina, A., Zengin, G., Ak, G., Jugreet, S., Mahomoodally, M. F., Chiavaroli, A. 2022. New Biological and Chemical Evidences of Two Lamiaceae Species (Thymbra capitata and Thymus sipyleus Subsp. rosulans): in Vitro, in Silico and ex Vivo Approaches. Molecules, 27(24), 9029.
  • Meftahi, A., Khajavi, R., Rashidi, A., Rahimi, M. K., Bahador, A., 2015. Effect of Purification on Nano Microbial Cellulose Pellicle Properties. Procedia Materials Science, 11, 206-211.
  • Nadeem, M., Imran, M., Aslam Gondal, T., Imran, A., Shahbaz, M., Muhammad Amir, R., Wasim Sajid, M., Batool Qaisrani, T., Atif, M., Hussain, G., 2019. Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review. Applied Science., 9, 3139.
  • Nasr, AM., Mortagi, YI., Elwahab, NHA., Alfaifi, MY., Shati, AA., Elbehairi, SEI., Elshaarawy, RFM., Kamal, I., 2022. Upgrading the Transdermal Biomedical Capabilities of Thyme Essential Oil Nanoemulsions Using Amphiphilic Oligochitosan Vehicles. Pharmaceutics 14 (7), 1350.
  • Ndhlala, A. R., Işık, M., Kavaz Yüksel, A., Dikici, E., 2024. Phenolic Content Analysis of Two Species Belonging to the Lamiaceae Family: Antioxidant, Anticholinergic, and Antibacterial Activities. Molecules, 29 (2), 480.
  • Nilofar, N., Zengin, G., Acar, M., Bouyayha, A., Youssra, A., Eldahshan, O., Fahmy, N., 2024. Assessing the Chemical Composition, Antioxidant and Enzyme İnhibitory Effects of Pentapleura subulifera and Cyclotrichium glabrescens Extracts. Chemistry, Biodiversity, 2 (2), e202301651.
  • Panggabean, H., Ahmad, S. T., Sukardi, S., Yahfizham, Y., Thahir, M. T., 2024. Bacterial Cellulose Powder as a Filler in a Matrix Composite from Oil Palm Trunk. Journal of Fibers and Polymer Composites, 3 (1), 33-40.
  • Polat, Z. A., Tepe, B., Vural, A. 2007. In Vitro Effectiveness of Thymus sipyleus subsp. sipyleus sar. sipyleus on Acanthamoeba castellanii and İts Cytotoxic Potential on Corneal Cells. Parasitology research, 101, 1551-1555.
  • Razali, NA, Conte, M, McGregor, J., 2019. The Role of İmpurities in the La2O3 Catalysed Carboxylation of Crude Glycerol. Catalysis Letters, 149:1403–1414.
  • Rigueto, C. V. T., de Vasconcelos, G., Rosseto, M., Krein, D. D. C., Oliveira, F., Freitas, C. P., Pizzutti, I. R., 2024. Composite Films from Steam-Exploded Gelatin and Thyme Essential Oil: Production, Characterization and Application as Coatings. Journal of Polymers and the Environment, 1-13.
  • Shirsath, S. R., Sonawane, S. H., Gogate, P. R., 2021. Intensification of Extraction of Natural Products Using Ultrasonic İrradiations a Review of Current Status. Chemical Engineering and Processing: Process Intensification, 53, 10-23.
  • Siahaan, R. C., Sitorus, M., Mulia, R., Gea, S., 2020. In vitro İnvestigation of Bacterial Cellulose/Turmeric Extract (Bc-Te) Nanocomposite for Burn Wound Dressing. ‘1st International Conference on Chemical Science and Technology Innovation. Indonesia’, 1, 297-300.
  • Song, J. E., Cavaco-Paulo, A., Silva C., Kim, H. R., 2020. Improvement of Bacterial Cellulose Nonwoven Fabrics by Physical Entrapment of Lauryl Gallate Oligomers. Textile Research Journal, 90,166-178.
  • Stumpf, T.R., Yang, X., Zhang, J., Cao, X., 2018. In Situ and Ex Situ Modifications of Bacterial Cellulose for Applications in Tissue Engineering. Materials Science and Engineering, C 82, 372–383.
  • Sukhtezari, S., Almasi, H., Pirsa, S., Zandi, M., Pirouzifard, M., 2017. Development of Bacterial Cellulose Based Slow-Release Active Films by İncorporation of Scrophularia striata Boiss. Extract. Carbohydrate Polymers, 156, 340-350.
  • Ul-Islam, M, Ha, JH, Khan, T, Park, JK., 2013. Efects of Glucuronic Acid Oligomers on the Production, Structure and Properties of Bacterial Cellulose. Carbohydrate Polymers, 92:360–366.
  • Ul-Islam, M., Ahmad, F., Fatima, A., Shah, N., Yasir, S., Ahmad, M. W., Ullah, M. W., 2021. Ex Situ Synthesis and Characterization of High Strength Multipurpose Bacterial Cellulose-Aloe vera Hydrogels. Frontiers in Bioengineering and Biotechnology, 9, 601988.
  • Ul-Islam, M., Alhajaim, W., Fatima, A., Yasir, S., Kamal, T., Abbas, Y., Yang, G., 2023. Development of Low-Cost Bacterial Cellulose-Pomegranate Peel Extract-Based Antibacterial Composite for Potential Biomedical Applications. International Journal of Biological Macromolecules, 231, 123269.
  • Ul-Islam, M., Khan, T., Park, J. K., 2012. Water Holding and Release Properties of Bacterial Cellulose Obtained by In Situ and Ex Situ Modification. Carbohydrate Polymers, 88, 596-603.
  • Ustuner, O., Anlas, C.,Bakirel, T., Ustun-Alkan, F., Diren Sigirci, B., Ak, S., Akpulat, H.A., Donmez, C., Koca-Caliskan, U., 2019. In Vitro Evaluation of Antioxidant, Anti-İnflammatory, Antimicrobial and Wound Healing Potential of Thymus sipyleus Boiss. subsp. rosulans (Borbas) Jalas. Molecules, 24, 3353.
  • Wei, J, Wang, B, Li, Z., 2020. A 3D-Printable TEMPO-Oxidized Bacterial Cellulose/Alginate Hydrogel with Enhanced Stability Via Nanoclay İncorporation. Carbohydrate Polymers, 238, 116207.
  • Zeng, M., 2014. Bacterial Cellulose: Fabrication, Characterization and Biocompability Studies. Universitat Autònoma de Barcelona, Departament de química, Facultat de Ciències, Doctoral Dissertion, Barselona.

PRODUCTION AND CHARACTERIZATION OF BACTERIAL CELLULOSE BIOCOMPOSITES BASED ON THYMUS SIPYLEUS BOISS. EXTRACT

Yıl 2025, Cilt: 13 Sayı: 1, 165 - 176, 20.03.2025
https://doi.org/10.21923/jesd.1565246

Öz

The aim of this study was to improve the antibacterial properties of bacterial cellulose (BC) produced by ex situ modification in Kombucha culture medium. Bioactive methanol extract from the plant Thymus sipyleus Boiss. was added to BC by ex situ modification to obtain a bioactive and cost-effective biocomposite. SEM and FTIR analyses confirmed the nanofibers, porous structure and chemical bonding of the extract with the BC nanofibers and revealed that the biocomposites were successfully produced. A significant decrease in water retention and swelling behavior was observed in the biocomposites. The antibacterial activity of the biocomposites was determined according to the AATC100-2004 method. The bactericidal activities of the biocomposites produced were compared with those of the gram-positive bacteria Staphylococcus aureus ATCC 25923 and the gram-negative bacteria Escherichia coli ATCC 25922. Biocomposite T010 (0.10% extract) showed strong antibacterial activity, reducing E. coli by 84.6% and S. aureus by 97.54%. The results of this study show that the T. sipyleus extract can be used as an effective antibacterial agent at appropriate concentrations and that the BC biocomposite produced by ex situ modification has excellent antibacterial properties.

Destekleyen Kurum

TUBITAK

Proje Numarası

223M224

Teşekkür

“This study was supported by Scientific and Technological Research Council of Türkiye (TUBITAK) under the Grant Number 223M224. The authors thank to TUBITAK for their support.”

Kaynakça

  • Asanarong, O., Quan, V. M., Boonrungsiman, S., Sukyai, P., 2020. Bioactive Wound Dressing Using Bacterial Cellulose Loaded with Papain Composite. Morphology, Loading/Release And Antibacterial Properties. European Polymer Journal, 143, 110224.
  • Ashjaran, A., Yazdanshenas, M., Rashidi, A., Khajavi, R., Rezaee, A., 2013. Overview of Bio Nanofabric from Bacterial Cellulose. Journal of the Textile Institute, 104, 121–31.
  • Ashori, A., Sheykhnazari, S., Tabarsa, T., Shakeri, A., Golalipour, M., 2012. Bacterial Cellulose/Silica Nanocomposites: Preparation and Characterization. Carbohydrate Polymers, 90 (1), 413-418.
  • Barud, H. D. S., de Araújo Júnior, A. M., Saska, S., Mestieri, L. B., Campos, J. A. D. B., De Freitas, R. M., Berretta, A. A., 2013. Antimicrobial Brazilian Propolis (EPP‐AF) Containing Biocellulose Membranes as Promising Biomaterial for Skin Wound Healing. Evidence‐Based Complementary and Alternative Medicine, (1), 703024.
  • Beldjilali, M., Mekhissi, K., Khane, Y., Chaibi, W., Belarbi, L., Bousalem, S., 2020. Antibacterial and Antifungal Efficacy of Silver Nanoparticles Biosynthesized Using Leaf Extract of SİTU algeriensis. Journal of Inorganic and Organometallic Polymers and Materials, 30 (6), 2126-2133.
  • Bodea, I. M., Cătunescu, G. M., Pop, C. R., Fiț, N. I., David, A. P., Dudescu, M. C., Beteg, F. I., 2022. Antimicrobial Properties of Bacterial Cellulose Films Enriched With Bioactive Herbal Extracts Obtained by Microwave-Assisted Extraction. Polymers, 14 (7), 1435.
  • Boni, B. O. O., Lamboni, L., Bakadia, B. M., Hussein, S. A., Yang, G., 2020. Combining Silk Sericin and Surface Micropatterns in Bacterial Cellulose Dressings to Control Fibrosis and Enhance Wound Healing. Engineered Science, 10, 68-77.
  • Brown, A.J., 1886. XLIII. On an Acetic Ferment which forms Cellulose. Journal of the Chemical Society, 49, 432–439.
  • Cazón, P., Vázquez, M., 2021. Improving Bacterial Cellulose Films by Ex-Situ and İn-Situ Modifications. A review. Food Hydrocolloids, 113, 106514.
  • Chen, J., Chen, C., Liang, G., Xu, X., Hao, Q., Sun, D., 2019. In Situ Preparation of Bacterial Cellulose with Antimicrobial Properties from Bioconversion of Mulberry Leaves. Carbohydrate Polymers, 220, 170–175.
  • Cuce, M., 2022. Investigation of color, fastness, and antimicrobial properties of wool fabrics dyed with Rosa canina leaf extract. Journal of Natural Fibers, 19, 823-834.
  • Cuce, M., Kılınc, M., Kılınc, N., 2019. Investıgation of Color and Antimicrobial Properties of Wool Fabrics Dyed with Polygonum Cognatum Natural Dye Extracts. ‘In International 19 May Innovative Scientific Approaches Congress, Samsun, Turkey’, 1, 1211-24.
  • Cuce, M., Kilinc, M., Kilinc, N., Tekin, A., Kut, D., 2022. Color, Fastness, and Antimicrobial Properties of Wool Fabrics Dyed with Helichrysum arenarium Subsp. aucheri Extract. Journal of Natural Fibers, 19 (3), 797-809.
  • Cüce, M., Basançelebi, O., 2021. Comparison of Volatile Constituents, Antioxidant and Antimicrobial Activities of Thymus leucotrichus (Lamiaceae) Stem and Leaves Essential Oils from Both Natural Resources and In Vitro Derived Shoots. Journal of Essential Oil Bearing Plants, 24 (5), 1097-1112.
  • Du, R., Zhao, F., Peng Q., Zhou, Z., Han, Y., 2018. Production and Characterization of Bacterial Cellulose Produced by Gluconacetobacter xylinus İsolated from Chinese Persimmon Vinegar. Carbohydrate Polymers, 194, 200-207.
  • Elansary, H. O., Szopa, A., Kubica, P., Ekiert, H., Klimek-Szczykutowicz, M., El-Ansary, D. O., Mahmoud, E. A., 2020. Polyphenol Profile and Antimicrobial and Cytotoxic Activities of Natural Mentha× piperita And Mentha longifolia Populations İn Northern Saudi Arabia. Processes, 8, 1-17.
  • Elbouny, H., Ouahzizi, B., Bouhlali, E.D.T, Sellam, K., Alem, C., 2022. Pharmacological, Biological and Phytochemical aspects Of Thymus munbyanus Boiss. & Reut. A Review. Plant Science Today. 9, 399–404.
  • Fatima, A., Yasir, S., Khan M. S., Manan S., Ullah M. W., Ul-Islam M., 2021. Plant Extract-Loaded Bacterial Cellulose Composite Membrane for Potential Biomedical Applications. Journal of Bioresources and Bioproducts, 6, 26-32.
  • Fatima, A., Yasir, S., Ul-Islam, M., Kamal, T., Ahmad, M. W., Abbas, Y., Yang, G., 2022. Ex Situ Development and Characterization of Green Antibacterial Bacterial Cellulose-Based Composites for Potential Biomedical Applications. Advanced Composites and Hybrid Materials, 1-15.
  • Fernandes, I. D. A. A., Maciel, G. M., de Oliveira, A. L. M. S., Miorim, A. J. F., Fontana, J. D., Ribeiro, V. R., Haminiuk, C. W. I., 2020. Hybrid Bacterial Cellulose-Collagen Membranes Production in Culture Media Enriched with Antioxidant Compounds from Plant Extracts. Polymer Engineering & Science, 60, 2814-2826.
  • Gao, G., Niu, S., Li, T., Zhang, Y., Zha, X., Shi, Z., Ma, T., 2023. Fabrication of Bacterial Cellulose Composites with Antimicrobial Properties by İn Situ Modification Utilizing the Specific Function-Suspension Containing Water-İnsoluble Magnolol. International Journal of Biological Macromolecules, 239, 124329.
  • Gupte, Y., Kulkarni, A., Raut, B., Sarkar, P., Choudhury, R., Chawande, A., Dasgupta, S., 2021. Characterization of Nanocellulose Production by Strains of Komagataeibacter sp. İsolated from Organic Waste and Kombucha. Carbohydrate polymers, 266, 118176.
  • Han, J., Shim, E., Kim, H. R., 2019. Effects of Cultivation, Washing, and Bleaching Conditions on Bacterial Cellulose Fabric Production. Textile Research Journal, 89, 1094-1104.
  • Hungund, B, Siddhan, P, Basavaraj, H., 2016. Biosynthesis of Bacterial Cellulose and İmparting Antibacterial Property Through Novel Bio-Agents Biosynthesis of Bacterial Cellulose İmparting Antibacterial Property Through Novel Bio-Agents. Research Journal of Biotechnology, 11, 86–93.
  • İleri, T., Taşçı, F., Şahindokuyucu, F., 2010. Kombucha ve Sağlık Üzerine Etkileri. Uludag University Journal of the Faculty of Veterinary Medicine, 29, 69-77.
  • Jiji, S., Udhayakumar, S., Rose, C., Muralidharan, C., Kadirvelu, K., 2019. Thymol Enriched Bacterial Cellulose Hydrogel As Effective Material for Third Degree Burn Wound Repair. International journal of biological macromolecules, 122, 452-460.
  • Kamal, T., Ul-Islam, M., Khan, S. B., Bakhsh, E. M., & Chani, M. T. S., 2022. Development of plant extract impregnated bacterial cellulose as a green antimicrobial composite for potential biomedical applications. Industrial Crops and Products, 187, 115337.
  • Khattak, W.A., Khan, T., Ul-Islam, M., 2015. Production, Characterization and Physico-Mechanical Properties of Bacterial Cellulose from İndustrial Wastes. Journal of Polymers and the Environment, 23, 45–53.
  • Kilinc, M., Ay, E., Kut, D., 2022. Thermal, Chemical and Mechanical Properties of Regenerated Bacterial Cellulose Coated Cotton Fabric. Journal of Natural Fibers, 19, 7834-7851.
  • Kilinc, M., Canbolat, S., Merdan, N., Dayioglu, H., Akin, F., 2015. Investigation of The Color, Fastness and Antimicrobial Properties of Wool Fabrics Dyed with the Natural Dye Extracted from The Cone of Chamaecyparis lawsoniana. Procedia-Social and Behavioral Sciences, 195, 2152-2159.
  • Kilinc, N., Özdemir, Küçükçapraz, D., 2024. Production of Bacterial Cellulose Based on Bio Nonwoven / Nonwoven Composites for Medical Textile Applications. Textile and Apparel, 33, 357-365.
  • Klemm, D., Schumann, D., Kramer, F., Heßler, N., Hornung, M., Schmauder, H. P., Marsch, S., 2006. Nanocelluloses as İnnovative Polymers in Research and Application. İn ‘Polysaccharides İi’, (Ed(S).: Klemm D.), Springer, Germany, Vol. 1, 49-96.
  • Korkmaz, G., Kılınç, M., Kılınç, N., Kut, Y. D. 2023. The Role of Surface Modification Methods for Sustainable Textiles. In Roadmap to Sustainable Textiles. IntechOpen.
  • Kumar, M., Kumar, V., Saran, S., 2023. Efficient Production of Bacterial Cellulose Based Composites Using Zein Protein Extracted from Corn Gluten Meal. Journal of Food Science and Technology, 60, 1026-1035.
  • Li, X., He, T.; Wang, X., Shen, M., Yan, X., Fan, S., Wang, L., Wang, X., Xu, X., Sui, H., 2019. Traditional Uses, Chemical Constituents and Biological Activities of Plants from the Genus Thymus. Chemistry Biodiversity, 16, e1900254.
  • Li, Y., Guo, J., Li, M., Tang, Y., Murugadoss, V., Seok, I., Luo, Y., 2021. Recent Application of Cellulose Gel in Flexible Sensing a Review. ES Food Agroforestry, 4, 9-27.
  • Lin, W. C., Lien, C. C.,- Yeh, H. J., Yu, C.M., Hsu, S., 2013. Bacterial Cellulose and Bacterial Cellulose–Chitosan Membranes for Wound Dressing Applications. Carbohydrate Polymers, 94, 603–611.
  • Llorent-Martínez, E. J., Ruiz-Medina, A., Zengin, G., Ak, G., Jugreet, S., Mahomoodally, M. F., Chiavaroli, A. 2022. New Biological and Chemical Evidences of Two Lamiaceae Species (Thymbra capitata and Thymus sipyleus Subsp. rosulans): in Vitro, in Silico and ex Vivo Approaches. Molecules, 27(24), 9029.
  • Meftahi, A., Khajavi, R., Rashidi, A., Rahimi, M. K., Bahador, A., 2015. Effect of Purification on Nano Microbial Cellulose Pellicle Properties. Procedia Materials Science, 11, 206-211.
  • Nadeem, M., Imran, M., Aslam Gondal, T., Imran, A., Shahbaz, M., Muhammad Amir, R., Wasim Sajid, M., Batool Qaisrani, T., Atif, M., Hussain, G., 2019. Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review. Applied Science., 9, 3139.
  • Nasr, AM., Mortagi, YI., Elwahab, NHA., Alfaifi, MY., Shati, AA., Elbehairi, SEI., Elshaarawy, RFM., Kamal, I., 2022. Upgrading the Transdermal Biomedical Capabilities of Thyme Essential Oil Nanoemulsions Using Amphiphilic Oligochitosan Vehicles. Pharmaceutics 14 (7), 1350.
  • Ndhlala, A. R., Işık, M., Kavaz Yüksel, A., Dikici, E., 2024. Phenolic Content Analysis of Two Species Belonging to the Lamiaceae Family: Antioxidant, Anticholinergic, and Antibacterial Activities. Molecules, 29 (2), 480.
  • Nilofar, N., Zengin, G., Acar, M., Bouyayha, A., Youssra, A., Eldahshan, O., Fahmy, N., 2024. Assessing the Chemical Composition, Antioxidant and Enzyme İnhibitory Effects of Pentapleura subulifera and Cyclotrichium glabrescens Extracts. Chemistry, Biodiversity, 2 (2), e202301651.
  • Panggabean, H., Ahmad, S. T., Sukardi, S., Yahfizham, Y., Thahir, M. T., 2024. Bacterial Cellulose Powder as a Filler in a Matrix Composite from Oil Palm Trunk. Journal of Fibers and Polymer Composites, 3 (1), 33-40.
  • Polat, Z. A., Tepe, B., Vural, A. 2007. In Vitro Effectiveness of Thymus sipyleus subsp. sipyleus sar. sipyleus on Acanthamoeba castellanii and İts Cytotoxic Potential on Corneal Cells. Parasitology research, 101, 1551-1555.
  • Razali, NA, Conte, M, McGregor, J., 2019. The Role of İmpurities in the La2O3 Catalysed Carboxylation of Crude Glycerol. Catalysis Letters, 149:1403–1414.
  • Rigueto, C. V. T., de Vasconcelos, G., Rosseto, M., Krein, D. D. C., Oliveira, F., Freitas, C. P., Pizzutti, I. R., 2024. Composite Films from Steam-Exploded Gelatin and Thyme Essential Oil: Production, Characterization and Application as Coatings. Journal of Polymers and the Environment, 1-13.
  • Shirsath, S. R., Sonawane, S. H., Gogate, P. R., 2021. Intensification of Extraction of Natural Products Using Ultrasonic İrradiations a Review of Current Status. Chemical Engineering and Processing: Process Intensification, 53, 10-23.
  • Siahaan, R. C., Sitorus, M., Mulia, R., Gea, S., 2020. In vitro İnvestigation of Bacterial Cellulose/Turmeric Extract (Bc-Te) Nanocomposite for Burn Wound Dressing. ‘1st International Conference on Chemical Science and Technology Innovation. Indonesia’, 1, 297-300.
  • Song, J. E., Cavaco-Paulo, A., Silva C., Kim, H. R., 2020. Improvement of Bacterial Cellulose Nonwoven Fabrics by Physical Entrapment of Lauryl Gallate Oligomers. Textile Research Journal, 90,166-178.
  • Stumpf, T.R., Yang, X., Zhang, J., Cao, X., 2018. In Situ and Ex Situ Modifications of Bacterial Cellulose for Applications in Tissue Engineering. Materials Science and Engineering, C 82, 372–383.
  • Sukhtezari, S., Almasi, H., Pirsa, S., Zandi, M., Pirouzifard, M., 2017. Development of Bacterial Cellulose Based Slow-Release Active Films by İncorporation of Scrophularia striata Boiss. Extract. Carbohydrate Polymers, 156, 340-350.
  • Ul-Islam, M, Ha, JH, Khan, T, Park, JK., 2013. Efects of Glucuronic Acid Oligomers on the Production, Structure and Properties of Bacterial Cellulose. Carbohydrate Polymers, 92:360–366.
  • Ul-Islam, M., Ahmad, F., Fatima, A., Shah, N., Yasir, S., Ahmad, M. W., Ullah, M. W., 2021. Ex Situ Synthesis and Characterization of High Strength Multipurpose Bacterial Cellulose-Aloe vera Hydrogels. Frontiers in Bioengineering and Biotechnology, 9, 601988.
  • Ul-Islam, M., Alhajaim, W., Fatima, A., Yasir, S., Kamal, T., Abbas, Y., Yang, G., 2023. Development of Low-Cost Bacterial Cellulose-Pomegranate Peel Extract-Based Antibacterial Composite for Potential Biomedical Applications. International Journal of Biological Macromolecules, 231, 123269.
  • Ul-Islam, M., Khan, T., Park, J. K., 2012. Water Holding and Release Properties of Bacterial Cellulose Obtained by In Situ and Ex Situ Modification. Carbohydrate Polymers, 88, 596-603.
  • Ustuner, O., Anlas, C.,Bakirel, T., Ustun-Alkan, F., Diren Sigirci, B., Ak, S., Akpulat, H.A., Donmez, C., Koca-Caliskan, U., 2019. In Vitro Evaluation of Antioxidant, Anti-İnflammatory, Antimicrobial and Wound Healing Potential of Thymus sipyleus Boiss. subsp. rosulans (Borbas) Jalas. Molecules, 24, 3353.
  • Wei, J, Wang, B, Li, Z., 2020. A 3D-Printable TEMPO-Oxidized Bacterial Cellulose/Alginate Hydrogel with Enhanced Stability Via Nanoclay İncorporation. Carbohydrate Polymers, 238, 116207.
  • Zeng, M., 2014. Bacterial Cellulose: Fabrication, Characterization and Biocompability Studies. Universitat Autònoma de Barcelona, Departament de química, Facultat de Ciències, Doctoral Dissertion, Barselona.
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tekstil Bilimleri ve Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Nur Kılınç 0000-0003-4494-5084

Dicle Özdemir Küçükçapraz 0000-0003-0209-8323

Mustafa Cüce 0000-0001-7406-171X

Proje Numarası 223M224
Yayımlanma Tarihi 20 Mart 2025
Gönderilme Tarihi 11 Ekim 2024
Kabul Tarihi 27 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 1

Kaynak Göster

APA Kılınç, N., Özdemir Küçükçapraz, D., & Cüce, M. (2025). PRODUCTION AND CHARACTERIZATION OF BACTERIAL CELLULOSE BIOCOMPOSITES BASED ON THYMUS SIPYLEUS BOISS. EXTRACT. Mühendislik Bilimleri Ve Tasarım Dergisi, 13(1), 165-176. https://doi.org/10.21923/jesd.1565246