Araştırma Makalesi
BibTex RIS Kaynak Göster

MINERALOGICAL AND GEOCHEMICAL CHARACTERISTICS OF EPIDOTES IN THE MAFIC-INTERMEDIATE DYKES IN WEST OF YENİŞARBADEMLİ (ISPARTA, TURKEY)

Yıl 2025, Cilt: 13 Sayı: 1, 275 - 285, 20.03.2025
https://doi.org/10.21923/jesd.1587413

Öz

The dykes cutting the Bozburun schist forming the base of the Beydağları-Karacahisar autochthonous are basalt, basaltic andesite and andesite in composition. The examination of the epidotes found in these basalt, basaltic andesite and andesite rocks is the subject of this study. It has been determined that euhedral and subhedral epidotes are formed as a result of both direct crystallization from magma and alteration of biotite, hornblende and plagioclase minerals. The Ps content of magmatic epidotes is between 25-32% and generally has an allanite core and low TiO2 concentration (<0.02%). The Ps value of secondary epidotes also shows biotite alteration between 0-25% and biotite alteration between 33-38% (Tulloch, 1979). They are generally accompanied by chlorite, apatite and titanite minerals. The Ps content of epidotes in the dykes varies between 7 and 41.5%. The epidote group minerals with XFe+3 values between 0.222-1.000 are composed of clinozoisite and epidote. The oscillatory zoning observed in magmatic epidotes is an indication of a cyclic change in the composition or oxygen fugacity of the magma during crystallization. Considering their textural and chemical properties and Ps contents, it was determined that magmatic epidotes were crystallized from magma with a high H2O content, under low pressure and high oxygen fugacity.

Kaynakça

  • Abbo, A., Avigad, D., Gerdes, A., Güngör, T., 2015, Cadomian Basement and Paleozoic to Triassic Siliciclastics of the Taurides (Karacahisar dome, south‐central Turkey): Paleogeographic Constraints from U–Pb–Hf in zircons, Lithos 227, 122–139.
  • Armbruster, T., Bonazzi, P., Akasaka, M., Bermanec, V., Chopin, C., Gieré, R., Heuss-Assbichler, S., Liebscher, A., Menchetti, S., Pan, Y., Pasero, M., 2006. Recommended Nomenclature of Epidote-Group Minerals. European Journal of Mineralogy 18 (5), 551–567.
  • Arnason, J.G., Bird, D.K., Liou, J.G., 1993. Variable controlling epidote compositionin hydrothermal and low-pressure regional metamorphic rocks. Abhand. Geol.Bund. 49, 17–25.
  • Baker, M.J., Wilkinson, J.J., Wilkinson, C.C., Cooke, D.R., Ireland, T., 2020. Epidote Trace Element Chemistry as an Exploration Tool in the Collahuasi District. Northern Chile. Economic Geology 115 (4), 749–770.
  • Bird, D.K., Spieler, A.R., 2004. Epidote in geothermal systems. Rev. Mineral. Geochem.56, 235–300.
  • Bird, D.K., Cho, M., Janik, C.J., Liou, J.G., Caruso, L.J., 1988. Compositional,order–disorder, and stable isotope characteristics of Al–Fe epidote, State 2-14drill hole, Salton Sea geothermal system. J. Geophys. Res. 93, 13135–13144.
  • Chukhrov, F.V.,1972. Mineraly (Minerals), Handbook, (3). Moscow, Nauka.
  • Cooke, D.R., et al., 2014. New Advances in Detecting the Distal Geochemical Footprints of Porphyry Systems—Epidote Mineral Chemistry as a Tool for Vectoring and Fertility Assessments, Building Exploration Capability for the 21st Century. Society of Economic Geologists.
  • Cooke, D. R., Baker, M., Hollings, P., Sweet, G., Chang, Z., Danyushevsky, L., Gilbert, S.,, Zhou, T., White, N,, Gemmell, J. B., and Inglis, S., 2014. New advances in detecting the distal geochemical footprints of porphyry systems – epidote mineral chemistry as a tool for vectoring and fertility assessments. In: Kelley, Karen D., and Golden, Howard C., (eds.) Building Exploration Capability for the 21st Century. SEG Special Publication, 18 . Society of Economic Geologists, Boulder, CO, USA, pp. 127-152.
  • Cornelius, H.P.,1913. Geologische Beobachtungen im Gebiet des Fornogletschers (Engadin), (8), 246-252.
  • Crawford, M.L., Hollister, L.S., 1982. Contrast of Metamorphic and Structural Histories Across the Work Channel Lineament, Coast Plutonic Complex, British Columbia. Journal of Geophysical Research. 87, 3849–3860.
  • Dawes, R.L., Evans, B.W.,1991. Mineralogy and Geothermobarometry of Magmatic Epidote-Bearing Dikes, Front Range, Colorado. Geological Society of America Bulletin 103(8), 1017-1031.
  • Dall’Agnol R., Cunha I.R.V., Guimarães F.V., Oliveira D.C., Teixeira M.F.B., Feio G.R.L., Lamarão C.N., 2017. Mineralogy, Geochemistry, and Petrology of Neoarchean Ferroan to Magnesian Granites of Carajás Province, Amazonian Craton: The Origin of Hydrated Granites Associated with Charnockites. Lithos, 277,3-32.
  • Dedeoğlu Yıldız, D.,2021. Dedegöl Daği (Yenişarbademli, Isparta) Dolayinin Jeolojisi Ve Magmatik Kayaçlarin Petrolojisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Jeoloji Mühendisliği Anabilim Dalı, Doktora Tezi, 138.
  • Dedeoğlu Yıldız, D., Yılmaz, K., and Aysal, N., 2021, Petrology and zircon U-Pb Geochronology of Mafic – Intermediate Dykes in the West-Central Taurides: Implications for Magma Source During the Late Precambrian–Early Palaeozoic: International Geology Review, 2436–2455.
  • Deer, W.A., Howie, R.A., Zussman, J., 1966. An Introduction to the rock-forming minerals. Longman Scientific and Technical, 61-69.
  • Dollase, W.A., 1969. Crystal structure and cation ordering of piemontite. American Mineralogist 54 (5–6), 710–717.
  • Dollase, W.A., 1973. M¨ossbauer spectra and iron distribution in the epidote-group minerals. Zeitschrift Für Kristallographie - Crystalline Materials 138 (1–6), 41–63.
  • Dumont, J.F., Kerey, E.,1975. Eğridir Gölü Güneyinin Temel Jeolojik Etüdü. Türkiye Jeoloji Kurultayı Bülteni, 18(2), 169-174.
  • Evans, B.W., Vance, J.A.,1987. Epidote Phenocrysts in Dacitic Dikes, Boulder County, Colorado. Contributions to Mineralogy and Petrology 96(2), 178-185
  • Frei, D., Liebscher, A., Franz, G., Dulski, P., 2004. Trace Element Geochemistry of Epidote Minerals. Reviews in Mineralogy and Geochemistry 56 (1), 553–605.
  • Forizs, I., Vukov, M., Jovic, V., 1995. Significance of Magmatic Epidote in the Zeljin Pluton, Serbia Third Hutton Symposium, The Origin of Granites and Related Rocks, Abstract. University of Maryland.
  • Holdaway, M.J., 1972. Thermal stability of Al–Fe–epidote as a Function of fO2 and Fe content. Contributions to Mineralogy and Petrology 37, 307–340.
  • Korinevskii, V.G., 2008. Magmatic Epidote from Gabbro. Russian Geology and Geophysics, 49(3), 159-164
  • Kröner, A., Şengör, A. M. C., 1990, Archean and Proterozoic ancestry in Late Precambrian to Ealy Paleozoic Crustal Elements of Southern Turkey as Rrevealed by Single-zircon Dating, Geology, 18, 11, 86–90.
  • Leterrier, J., 1972. Etude Petrographique et Geochimique du Massif Granitique de Querigut (Ariege). (PhD), Universite de Nancy, France.
  • Liou, J.G., 1973. Synthesis and Stability Relations of Epidote, Ca2Al2FeSi3O12 (OH). Journal of Petrology 14 (3), 381–413.
  • Mazaheri, A.,1999. The Importance of Pistacite in the Diagnosis of Epidote. The 8th Seminar of Crystallography and Mineralogy of Iran. Tehran: University of Science and Technology.
  • Naney, M.T.,1983. Phase-Equilibria of Rock-Forming Ferromagnesian Silicates in Granitic Systems. American Journal of Science 283(10), 993-1033.
  • Oliveira, M.A., Dall'Agnol, R., Scaillet, B., 2010. Petrological Constraints on Crystallization Conditions of Mesoarchean Sanukitoid Rocks, Southeastern Amazonian Craton, Brazil. Journal of Petrology 51(10), 2121-2148.
  • Owen, J.,1991. Significance of Epidote in Orbicular Diorite from the Grenville Front Zone, Eastern Labrador. Mineralogical Magazine 55(379) 173-181.
  • Pacey, A., Wilkinson, J.J., Cooke, D.R., 2020b. Chlorite and Epidote Mineral Chemistry in Porphyry Ore Systems: A Case Study of the Northparkes District, New South Wales. Australia. Economic Geology 115 (4), 701–727.
  • Pattnaik, S.K.,1996. Petrology of the Bhela-Rajna Alkaline Complex, Nuapara District, Orissa. Journal of the Geological Society of India, 48(1), 27-40.
  • Petrik, I., Broska, I., Lipka, J., Siman, P.,1995. Granitoid Allanite-(Ce): Substitution Relations, Redox Conditions and REE Distributions (on an Example of I-Type Granitoids, Western Carpathians, Slovakia). Geologica Carpathica, 46, 79–94.
  • Prouteau, G., Scaillet B., 2003. Experimental Constraints on the Origin of the 1991 Pinatubo Dacite. Journal of Petrology 44(12), 2203-2241.
  • Schmidt, M.W., Poli, S., 2004. Magmatic Epidote. Reviews in Mineralogy and Geochemistry 56, 399-430.
  • Schmidt, M.W., Thompson, A.B., 1996. Epidote in Calc-Alkaline Magmas: an Experimental Study of Stability, Phase Relationships, and the Role of Epidote in Magmatic Evolution. Am. Mineral. 81, 424–474.
  • Şenel, M., Gedik, l., Dalkılıç, N., Serdaroğlu, M., Bilgin, A.Z., Uğuz, M.F., Bölükbaşı, A, S., Korucu, M. ve Özgül, N., 1996. Isparta büklümü doğusunda otokton ve allokton birimlerin stratigrafisi (Batı Toroslar), MTA Dergisi, 118, 111-160.
  • Tchameni, R., Sun, F., Dawaï, D., Danra, G., Tékoum, L., Nomo Negue, E., Vanderhaeghe, O., Nzolang,C., Nguihdama D.,2016. Zircon Dating and Mineralogy of the Mokong Pan-African Magmatic Epidote-Bearing Granite (North Cameroon). International Journal of Earth Sciences 105(6), 1811-1830.
  • Tulloch, A.J.,1979. Secondary Ca-Al Silicates as Low-Grade Alteration Products of Granitoid Biotite. Contributions to Mineralogy and Petrology 69(2), 105-117.
  • Zen, E.A., Hammarstrom, J.M., 1984. Magmatic Epidote and Its Petrologic Significance. Geology 12(9), 515-518.
  • Zhang, W., et al., 2023. Discriminating Characteristic of Hydrothermal Fluids Using Epidote Mineral Chemistry and Strontium Isotopes: A Case Study of Duotoushan Fe-Cu deposite, eastern Tianshan. Earth Science Frontiers,30(02), 384-400.

YENİŞARBADEMLİ (ISPARTA, TÜRKİYE) BATISINDAKİ MAFİK-ORTAÇ DAYKLARDAKİ EPİDOTLARIN MİNERALOJİSİ VE JEOKİMYASAL KARAKTERİ

Yıl 2025, Cilt: 13 Sayı: 1, 275 - 285, 20.03.2025
https://doi.org/10.21923/jesd.1587413

Öz

Beydağları-Karacahisar otoktonun temelini oluşturan Bozburun şistini kesen dayklar; bazalt, bazaltik andezit ve andezit bileşimlidir. Bazalt, bazaltik andezit, ve andezit bileşimli kayaçlarda bulunan epidotların incelenmesi bu çalışmanın konusudur. Özşekilli ve yarı özşekilli epidotların, hem magmadan doğrudan kristallenmiş hem de biyotit, hornblend ve plajioklas minerallerinin alterasyonu sonucunda oluştuğu tespit edilmiştir. Magmatik epidotların, Ps içeriği %25-32 arasında olup, genellikle allanit çekirdekli ve düşük TiO2 konsantrasyonuna (<%0,02) sahiptir. İkincil epidotların da Ps değeri %0-25 arasında biyotit alterasyonu ve %33-38 arasında biyotit alterasyonunu göstermektedir (Tulloch, 1979). Genellikle bunlara klorit, apatit ve titanit mineralleri eşlik etmektedir. Dayklardaki epidotların Ps içeriği %7 ile 41,5 arasında değişmektedir. XFe+3 değeri 0,222-1,000 arasında olan epidot grubu mineraller, klinozoisit ve epidot kompozisyonludur. Magmatik epidotlarda gözlenen halkalı zonlanma, kristallenme sırasında magmanın kompozisyonunda veya oksijen fugasitesinde döngüsel bir değişim meydana geldiğinin göstergesidir. Dokusal ve kimyasal özellikleri ile Ps içerikleri göz önüne alındığında magmatik epidotların muhtemel yüksek H2O içeriğine sahip magmadan, düşük basınç ve yüksek oksijen fügasitesi altında kristallendiği belirlenmiştir.

Kaynakça

  • Abbo, A., Avigad, D., Gerdes, A., Güngör, T., 2015, Cadomian Basement and Paleozoic to Triassic Siliciclastics of the Taurides (Karacahisar dome, south‐central Turkey): Paleogeographic Constraints from U–Pb–Hf in zircons, Lithos 227, 122–139.
  • Armbruster, T., Bonazzi, P., Akasaka, M., Bermanec, V., Chopin, C., Gieré, R., Heuss-Assbichler, S., Liebscher, A., Menchetti, S., Pan, Y., Pasero, M., 2006. Recommended Nomenclature of Epidote-Group Minerals. European Journal of Mineralogy 18 (5), 551–567.
  • Arnason, J.G., Bird, D.K., Liou, J.G., 1993. Variable controlling epidote compositionin hydrothermal and low-pressure regional metamorphic rocks. Abhand. Geol.Bund. 49, 17–25.
  • Baker, M.J., Wilkinson, J.J., Wilkinson, C.C., Cooke, D.R., Ireland, T., 2020. Epidote Trace Element Chemistry as an Exploration Tool in the Collahuasi District. Northern Chile. Economic Geology 115 (4), 749–770.
  • Bird, D.K., Spieler, A.R., 2004. Epidote in geothermal systems. Rev. Mineral. Geochem.56, 235–300.
  • Bird, D.K., Cho, M., Janik, C.J., Liou, J.G., Caruso, L.J., 1988. Compositional,order–disorder, and stable isotope characteristics of Al–Fe epidote, State 2-14drill hole, Salton Sea geothermal system. J. Geophys. Res. 93, 13135–13144.
  • Chukhrov, F.V.,1972. Mineraly (Minerals), Handbook, (3). Moscow, Nauka.
  • Cooke, D.R., et al., 2014. New Advances in Detecting the Distal Geochemical Footprints of Porphyry Systems—Epidote Mineral Chemistry as a Tool for Vectoring and Fertility Assessments, Building Exploration Capability for the 21st Century. Society of Economic Geologists.
  • Cooke, D. R., Baker, M., Hollings, P., Sweet, G., Chang, Z., Danyushevsky, L., Gilbert, S.,, Zhou, T., White, N,, Gemmell, J. B., and Inglis, S., 2014. New advances in detecting the distal geochemical footprints of porphyry systems – epidote mineral chemistry as a tool for vectoring and fertility assessments. In: Kelley, Karen D., and Golden, Howard C., (eds.) Building Exploration Capability for the 21st Century. SEG Special Publication, 18 . Society of Economic Geologists, Boulder, CO, USA, pp. 127-152.
  • Cornelius, H.P.,1913. Geologische Beobachtungen im Gebiet des Fornogletschers (Engadin), (8), 246-252.
  • Crawford, M.L., Hollister, L.S., 1982. Contrast of Metamorphic and Structural Histories Across the Work Channel Lineament, Coast Plutonic Complex, British Columbia. Journal of Geophysical Research. 87, 3849–3860.
  • Dawes, R.L., Evans, B.W.,1991. Mineralogy and Geothermobarometry of Magmatic Epidote-Bearing Dikes, Front Range, Colorado. Geological Society of America Bulletin 103(8), 1017-1031.
  • Dall’Agnol R., Cunha I.R.V., Guimarães F.V., Oliveira D.C., Teixeira M.F.B., Feio G.R.L., Lamarão C.N., 2017. Mineralogy, Geochemistry, and Petrology of Neoarchean Ferroan to Magnesian Granites of Carajás Province, Amazonian Craton: The Origin of Hydrated Granites Associated with Charnockites. Lithos, 277,3-32.
  • Dedeoğlu Yıldız, D.,2021. Dedegöl Daği (Yenişarbademli, Isparta) Dolayinin Jeolojisi Ve Magmatik Kayaçlarin Petrolojisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Jeoloji Mühendisliği Anabilim Dalı, Doktora Tezi, 138.
  • Dedeoğlu Yıldız, D., Yılmaz, K., and Aysal, N., 2021, Petrology and zircon U-Pb Geochronology of Mafic – Intermediate Dykes in the West-Central Taurides: Implications for Magma Source During the Late Precambrian–Early Palaeozoic: International Geology Review, 2436–2455.
  • Deer, W.A., Howie, R.A., Zussman, J., 1966. An Introduction to the rock-forming minerals. Longman Scientific and Technical, 61-69.
  • Dollase, W.A., 1969. Crystal structure and cation ordering of piemontite. American Mineralogist 54 (5–6), 710–717.
  • Dollase, W.A., 1973. M¨ossbauer spectra and iron distribution in the epidote-group minerals. Zeitschrift Für Kristallographie - Crystalline Materials 138 (1–6), 41–63.
  • Dumont, J.F., Kerey, E.,1975. Eğridir Gölü Güneyinin Temel Jeolojik Etüdü. Türkiye Jeoloji Kurultayı Bülteni, 18(2), 169-174.
  • Evans, B.W., Vance, J.A.,1987. Epidote Phenocrysts in Dacitic Dikes, Boulder County, Colorado. Contributions to Mineralogy and Petrology 96(2), 178-185
  • Frei, D., Liebscher, A., Franz, G., Dulski, P., 2004. Trace Element Geochemistry of Epidote Minerals. Reviews in Mineralogy and Geochemistry 56 (1), 553–605.
  • Forizs, I., Vukov, M., Jovic, V., 1995. Significance of Magmatic Epidote in the Zeljin Pluton, Serbia Third Hutton Symposium, The Origin of Granites and Related Rocks, Abstract. University of Maryland.
  • Holdaway, M.J., 1972. Thermal stability of Al–Fe–epidote as a Function of fO2 and Fe content. Contributions to Mineralogy and Petrology 37, 307–340.
  • Korinevskii, V.G., 2008. Magmatic Epidote from Gabbro. Russian Geology and Geophysics, 49(3), 159-164
  • Kröner, A., Şengör, A. M. C., 1990, Archean and Proterozoic ancestry in Late Precambrian to Ealy Paleozoic Crustal Elements of Southern Turkey as Rrevealed by Single-zircon Dating, Geology, 18, 11, 86–90.
  • Leterrier, J., 1972. Etude Petrographique et Geochimique du Massif Granitique de Querigut (Ariege). (PhD), Universite de Nancy, France.
  • Liou, J.G., 1973. Synthesis and Stability Relations of Epidote, Ca2Al2FeSi3O12 (OH). Journal of Petrology 14 (3), 381–413.
  • Mazaheri, A.,1999. The Importance of Pistacite in the Diagnosis of Epidote. The 8th Seminar of Crystallography and Mineralogy of Iran. Tehran: University of Science and Technology.
  • Naney, M.T.,1983. Phase-Equilibria of Rock-Forming Ferromagnesian Silicates in Granitic Systems. American Journal of Science 283(10), 993-1033.
  • Oliveira, M.A., Dall'Agnol, R., Scaillet, B., 2010. Petrological Constraints on Crystallization Conditions of Mesoarchean Sanukitoid Rocks, Southeastern Amazonian Craton, Brazil. Journal of Petrology 51(10), 2121-2148.
  • Owen, J.,1991. Significance of Epidote in Orbicular Diorite from the Grenville Front Zone, Eastern Labrador. Mineralogical Magazine 55(379) 173-181.
  • Pacey, A., Wilkinson, J.J., Cooke, D.R., 2020b. Chlorite and Epidote Mineral Chemistry in Porphyry Ore Systems: A Case Study of the Northparkes District, New South Wales. Australia. Economic Geology 115 (4), 701–727.
  • Pattnaik, S.K.,1996. Petrology of the Bhela-Rajna Alkaline Complex, Nuapara District, Orissa. Journal of the Geological Society of India, 48(1), 27-40.
  • Petrik, I., Broska, I., Lipka, J., Siman, P.,1995. Granitoid Allanite-(Ce): Substitution Relations, Redox Conditions and REE Distributions (on an Example of I-Type Granitoids, Western Carpathians, Slovakia). Geologica Carpathica, 46, 79–94.
  • Prouteau, G., Scaillet B., 2003. Experimental Constraints on the Origin of the 1991 Pinatubo Dacite. Journal of Petrology 44(12), 2203-2241.
  • Schmidt, M.W., Poli, S., 2004. Magmatic Epidote. Reviews in Mineralogy and Geochemistry 56, 399-430.
  • Schmidt, M.W., Thompson, A.B., 1996. Epidote in Calc-Alkaline Magmas: an Experimental Study of Stability, Phase Relationships, and the Role of Epidote in Magmatic Evolution. Am. Mineral. 81, 424–474.
  • Şenel, M., Gedik, l., Dalkılıç, N., Serdaroğlu, M., Bilgin, A.Z., Uğuz, M.F., Bölükbaşı, A, S., Korucu, M. ve Özgül, N., 1996. Isparta büklümü doğusunda otokton ve allokton birimlerin stratigrafisi (Batı Toroslar), MTA Dergisi, 118, 111-160.
  • Tchameni, R., Sun, F., Dawaï, D., Danra, G., Tékoum, L., Nomo Negue, E., Vanderhaeghe, O., Nzolang,C., Nguihdama D.,2016. Zircon Dating and Mineralogy of the Mokong Pan-African Magmatic Epidote-Bearing Granite (North Cameroon). International Journal of Earth Sciences 105(6), 1811-1830.
  • Tulloch, A.J.,1979. Secondary Ca-Al Silicates as Low-Grade Alteration Products of Granitoid Biotite. Contributions to Mineralogy and Petrology 69(2), 105-117.
  • Zen, E.A., Hammarstrom, J.M., 1984. Magmatic Epidote and Its Petrologic Significance. Geology 12(9), 515-518.
  • Zhang, W., et al., 2023. Discriminating Characteristic of Hydrothermal Fluids Using Epidote Mineral Chemistry and Strontium Isotopes: A Case Study of Duotoushan Fe-Cu deposite, eastern Tianshan. Earth Science Frontiers,30(02), 384-400.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Maden Yatakları ve Jeokimya, Mineraloji-Petrografi
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Deniz Dedeoğlu Yıldız 0000-0002-4619-3376

Yayımlanma Tarihi 20 Mart 2025
Gönderilme Tarihi 20 Kasım 2024
Kabul Tarihi 24 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 1

Kaynak Göster

APA Dedeoğlu Yıldız, D. (2025). YENİŞARBADEMLİ (ISPARTA, TÜRKİYE) BATISINDAKİ MAFİK-ORTAÇ DAYKLARDAKİ EPİDOTLARIN MİNERALOJİSİ VE JEOKİMYASAL KARAKTERİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 13(1), 275-285. https://doi.org/10.21923/jesd.1587413