Araştırma Makalesi
BibTex RIS Kaynak Göster

TECHNO-ECONOMIC ANALYSIS OF DIMETHYL ETHER PRODUCTION PROCESS FROM METHANOL

Yıl 2025, Cilt: 13 Sayı: 1, 340 - 352, 20.03.2025
https://doi.org/10.21923/jesd.1590072

Öz

In this study, a simulation of the indirect synthesis method for producing dimethyl ether (DME) from methanol and a techno-economic analysis of the production process was performed using SuperPro Designer for different production capacities (40,000-65,000 tons/year). An improved flow chart that ensures energy transfer to the production process by burning natural gas was also enhanced. For the annual production of 55,000 tons of DME, the total capital investment, annual operating cost, and unit DME production cost were estimated to be 11.406 M$, 28.375 M$, and 515.93 $/ton, respectively. The effect of different DME production capacities on the payback period was also determined based on various production capacities. As a result of the techno-economic evaluation, an acceptable payback period was calculated as 5.02 years. The simulation study shows that the indirect synthesis method for DME production from methanol has a high profitability potential in the short term at production capacities exceeding 55,000 tons/year DME production rate.

Kaynakça

  • Ahire, J. P., Mousavi-Avval, S. H., Rajendran, N., Bergman, R., Runge, T., Jiang, C., Hu J., 2024. Techno-economic and life cycle analyses of bio-adhesives production from isolated soy protein and kraft lignin. Journal of Cleaner Production, 447, 141474. https://doi.org/10.1016/j.jclepro.2024.141474.
  • Alshbuki, E. H., Bey, M. M., Mohamed, A. A., 2020. Simulation Production of Dimethylether (DME) from Dehydration of Methanol Using Aspen Hysys. Scholars International Journal of Chemistry and Material Sciences, 03 (02), 13-18. 10.36348/sijcms.2020.v03i02.002.
  • Azizi, Z., Rezaeimanesh, M., Tohidian, T. Rahimpour, M. R., 2014. Dimethyl ether: A review of technologies and production challenges. Chemical Engineering and Processing: Process Intensification, 82, 150-172. https://doi.org/10.1016/j.cep.2014.06.007.
  • Baroi, G. N., Gavala, H. N., Westermann, P., Skiadas, I. V., 2017. Fermentative production of butyric acid from wheat straw: Economic evaluation. Industrial Crops and Products, 104, 68-80. https://doi.org/10.1016/j.indcrop.2017.04.008.
  • Chen, H. J., Fan, C. W., Yu, C. S., 2013. Analysis, synthesis, and design of a one-step dimethyl ether production via a thermodynamic approach. Applied Energy, 101, 449-456. https://doi.org/10.1016/j.apenergy.2012.08.025.
  • Chmielarz, L., 2024. Dehydration of Methanol to Dimethyl Ether—Current State and Perspectives. Catalysts, 14 (5), 308. https://doi.org/10.3390/catal14050308.
  • Dahmen, N., Henrich, E., Dinjus, E., Weirich, F., 2012. The bioliq® bioslurry gasification process for the production of biosynfuels, organic chemicals, and energy. Energy, Sustainability and Society, 2, 1-44. https://doi.org/10.1186/2192-0567-2-3.
  • De Tommaso, J., Galli, F., Weber, R., Dubois, J. L., Patience, G. S., 2024. Total Capital Investment of plastic recycling plants correlates with energy losses and capacity. ChemSusChem, 17 (5), e202301172. https://doi.org/10.1002/cssc.202301172.
  • Dean, J. A., 1999. Lange’s Handbook of Chemistry, Fifteenth Edition. McGraw-Hill, Inc. Dieterich, V., Neumann, K., Niederdränk, A., Spliethoff, H., Fendt, S., 2024. Techno-economic assessment of renewable dimethyl ether production pathways from hydrogen and carbon dioxide in the context of power-to-X. Energy, 301, 131688. https://doi.org/10.1016/j.energy.2024.131688.
  • Dimethyl Ether Market Share, S., Trends, Industry Analysis Report, 2022-2030 https://www.polarismarketresearch.com/industry-analysis/dimethyl-ether-market. Erişim tarihi, 29.10.2024.
  • Dobrowolski, Z.; Drozdowski, G. Does the Net Present Value as a Financial Metric Fit Investment in Green Energy Security? Energies 2022, 15 (1), 353, https://doi.org/10.3390/en15010353.
  • Ereña, J., Sierra, I., Aguayo, A. T., Ateka, A., Olazar, M., Bilbao, J., 2011. Kinetic modelling of dimethyl ether synthesis from (H2+CO2) by considering catalyst deactivation. Chemical Engineering Journal, 174 (2-3), 660-667. https://doi.org/10.1016/j.cej.2011.09.067.
  • Fortin, C., Gianfolcaro, N., Gonzalez, R., Lohest, J., Lonneux, A., Kesnelle, A., ... & Schmitz, C. 2020. Dimethyl ether, a review of production processes and a modeling of the indirect route. Liege Univ, 2019-2020.
  • Harahap, F., Silveira, S., Khatiwada, D., 2019. Cost competitiveness of palm oil biodiesel production in Indonesia. Energy, 170, 62-72. https://doi.org/10.1016/j.energy.2018.12.115.
  • Harun, N., Othman, N. A., Zaki, N. A., Mat Rasul, N. A., Samah, R. A., Hashim, H., 2019. Simulation of Anaerobic Digestion for Biogas Production from Food Waste Using SuperPro Designer. Materials Today: Proceedings, 19, 1315-1320. https://doi.org/10.1016/j.matpr.2019.11.143.
  • Leonzio, G., 2018. State of art and perspectives about the production of methanol, dimethyl ether and syngas by carbon dioxide hydrogenation. Journal of CO2 Utilization, 27, 326-354. https://doi.org/10.1016/j.jcou.2018.08.005.
  • Li, H. X., Zhang, Y., Li, Y., Huang, J., Costin, G., Zhang, P., 2021. Exploring payback-year based feed-in tariff mechanisms in Australia. Energy Policy, 150, 112133. https://doi.org/10.1016/j.enpol.2021.112133.
  • Lopes, G. D. F., Bonfim-Rocha, L., de Matos Jorge, L. M., Paraíso, P. R., 2020. Dimethyl Ether Production from Sugarcane Vinasse: Modeling and Simulation for a Techno-economic Assessment. BioEnergy Research, 13 (2), 397-410. https://doi.org/10.1007/s12155-020-10089-9.
  • Maqhuzu, A. B., Yoshikawa, K., Takahashi, F., 2020. Stochastic economic analysis of coal-alternative fuel production from municipal solid wastes employing hydrothermal carbonization in Zimbabwe. Science of The Total Environment, 716, 135337. https://doi.org/10.1016/j.scitotenv.2019.135337.
  • Merkouri, L. P., Ahmet, H., Reina, T. R., Duyar, M. S., 2022. The direct synthesis of dimethyl ether (DME) from landfill gas: A techno-economic investigation. Fuel, 319, 123741. https://doi.org/10.1016/j.fuel.2022.123741.
  • Moghaddam A. L., Hazlett, M. J., 2023. Methanol dehydration catalysts in direct and indirect dimethyl ether (DME) production and the beneficial role of DME in energy supply and environmental pollution. Journal of Environmental Chemical Engineering, 11 (3), 110307. https://doi.org/10.1016/j.jece.2023.110307.
  • Natural gas composition percentage, https://group.met.com/en/media/energy-insight/composition-of-natural-gas. Erişim tarihi, 16.11.2024.
  • Ogrodowczyk, D., Olejnik, T. P., Kaźmierczak, M., Brzeziński, S., Baryga, A., 2016. Economic analysis for biogas plant working at sugar factory. Biotechnology and Food Science, 80 (2), 129-136. https://doi.org/10.34658/bfs.2016.80.2.129-136.
  • Pang, Y. X., Yan, Y., Foo, D. C. Y., Sharmin, N., Zhao, H., Lester, E., Wu, T., Pang, C. H., 2019. The study of lignocellulosic biomass pyrolysis via superpro designer. 11th International Conference on Applied Energy, 2019, Paper ID: 0644.
  • Pasha, M. K., Dai, L., Liu, D., Guo, M., Du, W., 2021. An overview to process design, simulation and sustainability evaluation of biodiesel production. Biotechnol Biofuels, 14 (1), 129. https://doi.org/10.1186/s13068-021-01977-z.
  • Peters, M. S., Timmerhaus, K. D., West, R. E., 2003. Plant Design and Economics for Chemical Engineers, Fifth Edition. McGraw-Hill Education.
  • Roussos, A., Misailidis, N., Koulouris, A., Zimbardi, F., Petrides, D., 2019. A Feasibility Study of Cellulosic Isobutanol Production—Process Simulation and Economic Analysis. Processes, 7 (10), 667. https://doi.org/10.3390/pr7100667.
  • Rownaghi, A. A., Rezaei, F., Stante, M., Hedlund, J., 2012. Selective dehydration of methanol to dimethyl ether on ZSM-5 nanocrystals. Applied Catalysis B: Environmental, 119-120, 56-61. https://doi.org/10.1016/j.apcatb.2012.02.017.
  • Sidiras, D. K., Koukios, E. G., 2005. The effect of payback time on solar hot water systems diffusion: the case of Greece. Energy Conversion and Management, 46 (2), 269-280. https://doi.org/10.1016/j.enconman.2004.02.018.
  • Tomczyk, S., Ozturk, S., Wawrzyniak, T., Tessman, M., Ehrlich, C., Shaikh, F., 2022. The design and techno economic analysis of a succinic acid production facility. Frontiers in Sustainability, 3, 953942. https://doi.org/10.3389/frsus.2022.953942.
  • Turton, R., Bailie, R. C., Whiting, W. B., Shaeiwitz, J. A., 2012. Analysis, synthesis and design of chemical processes. Pearson Education.

METANOLDEN DİMETİL ETER ÜRETİM PROSESİNİN TEKNO-EKONOMİK ANALİZİ

Yıl 2025, Cilt: 13 Sayı: 1, 340 - 352, 20.03.2025
https://doi.org/10.21923/jesd.1590072

Öz

Bu çalışmada; SuperPro Designer kullanılarak, farklı üretim kapasitelerine (40.000-65000 ton/yıl) göre, metanolden dimetil eter (DME) üretimi için dolaylı sentez yönteminin bir simülasyonu ve üretim prosesinin tekno-ekonomik analizi gerçekleştirilmiştir. Üretim prosesine doğalgazın yakılmasıyla enerji geçişini sağlayan geliştirilmiş bir akım şeması da çizilmiştir. Yıllık 55.000 ton DME üretimi için toplam sermaye yatırımı, yıllık işletme maliyeti ve birim DME üretim maliyetinin, sırasıyla, 11,406 M$, 28,375 M$ ve 515,93 $/ton olduğu tahmin edilmektedir. Farklı DME üretim kapasitelerinin geri ödeme süresi üzerine etkisi de belirlenmiş olup, tekno-ekonomik değerlendirme sonucunda, kabul edilebilir bir geri ödeme süresi, 5,02 yıl olarak hesaplanmıştır. Gerçekleştirilen simülasyon çalışması ile metanolden DME üretimi için dolaylı sentez yönteminin, 55.000 ton/yıl DME üretim hızını aşan üretim kapasitelerinde, kısa vadede yüksek bir karlılık potansiyeline sahip olduğunu ortaya koymaktadır.

Kaynakça

  • Ahire, J. P., Mousavi-Avval, S. H., Rajendran, N., Bergman, R., Runge, T., Jiang, C., Hu J., 2024. Techno-economic and life cycle analyses of bio-adhesives production from isolated soy protein and kraft lignin. Journal of Cleaner Production, 447, 141474. https://doi.org/10.1016/j.jclepro.2024.141474.
  • Alshbuki, E. H., Bey, M. M., Mohamed, A. A., 2020. Simulation Production of Dimethylether (DME) from Dehydration of Methanol Using Aspen Hysys. Scholars International Journal of Chemistry and Material Sciences, 03 (02), 13-18. 10.36348/sijcms.2020.v03i02.002.
  • Azizi, Z., Rezaeimanesh, M., Tohidian, T. Rahimpour, M. R., 2014. Dimethyl ether: A review of technologies and production challenges. Chemical Engineering and Processing: Process Intensification, 82, 150-172. https://doi.org/10.1016/j.cep.2014.06.007.
  • Baroi, G. N., Gavala, H. N., Westermann, P., Skiadas, I. V., 2017. Fermentative production of butyric acid from wheat straw: Economic evaluation. Industrial Crops and Products, 104, 68-80. https://doi.org/10.1016/j.indcrop.2017.04.008.
  • Chen, H. J., Fan, C. W., Yu, C. S., 2013. Analysis, synthesis, and design of a one-step dimethyl ether production via a thermodynamic approach. Applied Energy, 101, 449-456. https://doi.org/10.1016/j.apenergy.2012.08.025.
  • Chmielarz, L., 2024. Dehydration of Methanol to Dimethyl Ether—Current State and Perspectives. Catalysts, 14 (5), 308. https://doi.org/10.3390/catal14050308.
  • Dahmen, N., Henrich, E., Dinjus, E., Weirich, F., 2012. The bioliq® bioslurry gasification process for the production of biosynfuels, organic chemicals, and energy. Energy, Sustainability and Society, 2, 1-44. https://doi.org/10.1186/2192-0567-2-3.
  • De Tommaso, J., Galli, F., Weber, R., Dubois, J. L., Patience, G. S., 2024. Total Capital Investment of plastic recycling plants correlates with energy losses and capacity. ChemSusChem, 17 (5), e202301172. https://doi.org/10.1002/cssc.202301172.
  • Dean, J. A., 1999. Lange’s Handbook of Chemistry, Fifteenth Edition. McGraw-Hill, Inc. Dieterich, V., Neumann, K., Niederdränk, A., Spliethoff, H., Fendt, S., 2024. Techno-economic assessment of renewable dimethyl ether production pathways from hydrogen and carbon dioxide in the context of power-to-X. Energy, 301, 131688. https://doi.org/10.1016/j.energy.2024.131688.
  • Dimethyl Ether Market Share, S., Trends, Industry Analysis Report, 2022-2030 https://www.polarismarketresearch.com/industry-analysis/dimethyl-ether-market. Erişim tarihi, 29.10.2024.
  • Dobrowolski, Z.; Drozdowski, G. Does the Net Present Value as a Financial Metric Fit Investment in Green Energy Security? Energies 2022, 15 (1), 353, https://doi.org/10.3390/en15010353.
  • Ereña, J., Sierra, I., Aguayo, A. T., Ateka, A., Olazar, M., Bilbao, J., 2011. Kinetic modelling of dimethyl ether synthesis from (H2+CO2) by considering catalyst deactivation. Chemical Engineering Journal, 174 (2-3), 660-667. https://doi.org/10.1016/j.cej.2011.09.067.
  • Fortin, C., Gianfolcaro, N., Gonzalez, R., Lohest, J., Lonneux, A., Kesnelle, A., ... & Schmitz, C. 2020. Dimethyl ether, a review of production processes and a modeling of the indirect route. Liege Univ, 2019-2020.
  • Harahap, F., Silveira, S., Khatiwada, D., 2019. Cost competitiveness of palm oil biodiesel production in Indonesia. Energy, 170, 62-72. https://doi.org/10.1016/j.energy.2018.12.115.
  • Harun, N., Othman, N. A., Zaki, N. A., Mat Rasul, N. A., Samah, R. A., Hashim, H., 2019. Simulation of Anaerobic Digestion for Biogas Production from Food Waste Using SuperPro Designer. Materials Today: Proceedings, 19, 1315-1320. https://doi.org/10.1016/j.matpr.2019.11.143.
  • Leonzio, G., 2018. State of art and perspectives about the production of methanol, dimethyl ether and syngas by carbon dioxide hydrogenation. Journal of CO2 Utilization, 27, 326-354. https://doi.org/10.1016/j.jcou.2018.08.005.
  • Li, H. X., Zhang, Y., Li, Y., Huang, J., Costin, G., Zhang, P., 2021. Exploring payback-year based feed-in tariff mechanisms in Australia. Energy Policy, 150, 112133. https://doi.org/10.1016/j.enpol.2021.112133.
  • Lopes, G. D. F., Bonfim-Rocha, L., de Matos Jorge, L. M., Paraíso, P. R., 2020. Dimethyl Ether Production from Sugarcane Vinasse: Modeling and Simulation for a Techno-economic Assessment. BioEnergy Research, 13 (2), 397-410. https://doi.org/10.1007/s12155-020-10089-9.
  • Maqhuzu, A. B., Yoshikawa, K., Takahashi, F., 2020. Stochastic economic analysis of coal-alternative fuel production from municipal solid wastes employing hydrothermal carbonization in Zimbabwe. Science of The Total Environment, 716, 135337. https://doi.org/10.1016/j.scitotenv.2019.135337.
  • Merkouri, L. P., Ahmet, H., Reina, T. R., Duyar, M. S., 2022. The direct synthesis of dimethyl ether (DME) from landfill gas: A techno-economic investigation. Fuel, 319, 123741. https://doi.org/10.1016/j.fuel.2022.123741.
  • Moghaddam A. L., Hazlett, M. J., 2023. Methanol dehydration catalysts in direct and indirect dimethyl ether (DME) production and the beneficial role of DME in energy supply and environmental pollution. Journal of Environmental Chemical Engineering, 11 (3), 110307. https://doi.org/10.1016/j.jece.2023.110307.
  • Natural gas composition percentage, https://group.met.com/en/media/energy-insight/composition-of-natural-gas. Erişim tarihi, 16.11.2024.
  • Ogrodowczyk, D., Olejnik, T. P., Kaźmierczak, M., Brzeziński, S., Baryga, A., 2016. Economic analysis for biogas plant working at sugar factory. Biotechnology and Food Science, 80 (2), 129-136. https://doi.org/10.34658/bfs.2016.80.2.129-136.
  • Pang, Y. X., Yan, Y., Foo, D. C. Y., Sharmin, N., Zhao, H., Lester, E., Wu, T., Pang, C. H., 2019. The study of lignocellulosic biomass pyrolysis via superpro designer. 11th International Conference on Applied Energy, 2019, Paper ID: 0644.
  • Pasha, M. K., Dai, L., Liu, D., Guo, M., Du, W., 2021. An overview to process design, simulation and sustainability evaluation of biodiesel production. Biotechnol Biofuels, 14 (1), 129. https://doi.org/10.1186/s13068-021-01977-z.
  • Peters, M. S., Timmerhaus, K. D., West, R. E., 2003. Plant Design and Economics for Chemical Engineers, Fifth Edition. McGraw-Hill Education.
  • Roussos, A., Misailidis, N., Koulouris, A., Zimbardi, F., Petrides, D., 2019. A Feasibility Study of Cellulosic Isobutanol Production—Process Simulation and Economic Analysis. Processes, 7 (10), 667. https://doi.org/10.3390/pr7100667.
  • Rownaghi, A. A., Rezaei, F., Stante, M., Hedlund, J., 2012. Selective dehydration of methanol to dimethyl ether on ZSM-5 nanocrystals. Applied Catalysis B: Environmental, 119-120, 56-61. https://doi.org/10.1016/j.apcatb.2012.02.017.
  • Sidiras, D. K., Koukios, E. G., 2005. The effect of payback time on solar hot water systems diffusion: the case of Greece. Energy Conversion and Management, 46 (2), 269-280. https://doi.org/10.1016/j.enconman.2004.02.018.
  • Tomczyk, S., Ozturk, S., Wawrzyniak, T., Tessman, M., Ehrlich, C., Shaikh, F., 2022. The design and techno economic analysis of a succinic acid production facility. Frontiers in Sustainability, 3, 953942. https://doi.org/10.3389/frsus.2022.953942.
  • Turton, R., Bailie, R. C., Whiting, W. B., Shaeiwitz, J. A., 2012. Analysis, synthesis and design of chemical processes. Pearson Education.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği Tasarımı, Kimyasal Proses Tasarımı
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Ali Yalçın 0000-0002-8722-4159

Yayımlanma Tarihi 20 Mart 2025
Gönderilme Tarihi 23 Kasım 2024
Kabul Tarihi 27 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 1

Kaynak Göster

APA Yalçın, A. (2025). METANOLDEN DİMETİL ETER ÜRETİM PROSESİNİN TEKNO-EKONOMİK ANALİZİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 13(1), 340-352. https://doi.org/10.21923/jesd.1590072