Lightning, a spectacular natural phenomenon, can be defined as a high-energy electrical discharge. Existing on Earth for an estimated 3 billion years and characterized as uncontrolled electrical movement, lightning is a major cause of failures in overhead power transmission lines. This study models an existing power transmission line—the one experiencing the highest number of lightning strikes annually within the power company—using its characteristics (grounding resistance of the tower, insulator length, protective conductor type, conductor type) and the Bergeron Method within the PSCAD simulation software. Using lightning data obtained from the Regional Meteorological Directorate, the study determines the lightning intensity at which faults occur on the line, causing power outages. Fault location data from the line operator's distance protection relay is used to identify the specific tower where the fault occurred. By injecting lightning strikes of varying current intensities into the developed model, a correlation was established between lightning current intensity, tower grounding resistance, and insulator length. This correlation determined the insulator length and tower grounding resistance thresholds at which power outages are likely to occur depending on the lightning current intensity.
Agrawal, S., & Nigam, M. (2014). Lightning phenomena and its effect on transmission line. Recent Research in Science and Technology, 183-187.
Alves, M., Oliveira, B., Ferreira, D., Santos, A., Maia, W., Soares, W., . . . Pinto, O. (2025). An automated technique and decision support system for lightning early warning. International Journal of Environmental Science and Technology , 2289-2304.
Araneo, R., Celozzi, S., Brandão, J., Andreotti, A., & Verolino, L. (2019). Lightning Performance of Overhead Distribution Lines with Underbuilt Ground Wires. International Applied Computational Electromagnetics Society Symposium (ACES) (s. 1-2). Miami: IEEE.
Arı, M. (2012). 154/380 kv Enerji İletim Hatlari Proje Uygulamalari. Ankara: Karaca.
Chisholm, W. A., Petrache, E., & Bologna, F. (2010). Grounding of overhead transmission lines for improved lightning protection. IEEE PES Transmission and Distribution Conference and Exposition (s. 1-6). New Orleans: IEEE.
Chisholm, W., & Petrache, E. (2010). Grounding of overhead transmission lines for improved lightning protection. IEEE PES Transmission and Distribution Conference and Exposition: Smart Solutions for a Changing World. Bologna: IEEE.
Chowdhuri, P. (1990). Lightning-induced voltages on multiconductor overhead lines. IEEE Transactions on Power Delivery, 658-667.
Chowdhuri, P. (1996). Electromagnetic Transients in Power Systems (High-Voltage Power Transmission Series) . Tennessee: Research Studies Pre.
Chowdhuri, P., & Gross, E. T. (1967). Voltage surges induced on overhead lines by lightning strokes. Proceedings of the Institution of Electrical Engineers, 114(12).
Cooray, V. (1994). Calculating Lightning-Induced Overvoltages in Power Lines: A Comparison of Two Coupling Models. IEEE Transactions on Electromagnetic Compatibility, 179-182.
Dan, Y., Zhang, Z., Bu, S., Wong, C.-N., & Lin, P. (2024). Analysis of Grounding Performance of Tower Grounding Electrodes in Elevated Terrain. IEEE Transactions on Power Delivery, 3305-3315.
Djalel, D., Ali, H., & Fayçal, C. (2007). The Return-Stroke of Lightning Current, Source of Electromagnetic Fields (Study, Analysis and Modelling) . American Journal of Applied Sciences, 42-48.
Dommel, H. (1969). Digital Computer Solution of Electromagnetic Transients in Single- and Multiphase Networks. IEEE Transactions on Power Apparatus and Systems, 388-399.
Enyong, P. (2017). Performance of a Developed Short Transmission Line Module: A Survey of Load Power-Factor Effects. London Journals of Engineering Research, 7-18.
Erduman, A., & Yıldız, F. (2019). IEC62305-2’ye Göre Yıldırım Risk Analizi: Hakkâri Üniversitesi Örneği. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 58-65.
Farzanehrafat, A., & Watson, N. (2013). Power Quality State Estimator for Smart Distribution Grids. IEEE Transactions on Power Systems, 2183-2191.
Furgal, J. (2020). Influence of Lightning Current Model on Simulations of Overvoltages in High Voltage Overhead Transmission Systems. Energies, 13(2), 1-10.
Hardi, S., Mirza, F., Bukit, F., & Rohana, R. (2021). Influence of Lightning Characteristics on Back Flashover in Extra High Voltage Transmission Line: A case study. Journal of Physics, 1811.
Holle, R. L. (2008). Annual rates of lightning fatalities by country. 20th International Lightning Detect,on Conference (s. 1-14). Tucson, Arizona: mtmt.
IEEE Standard 1410. (2010, 9 30). IEEE 1410-2010. Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines. IEEE.
Izadi, M., Abd Rahman, M., & Zaina, M. (2017). The influence of lightning induced voltage on the distribution power line polymer insulators. PLoS ONE, 12(2).
Jernegan, M. (1928). Benjamin Franklin's "Electrical Kite" and Lightning Rod. The New England Quarterly, 180-196.
Joseph R. Dwyer, Martin A. Uman. (2014). The physics of lightning. Atmospheric Research, 147-241.
Junzhang, O., & Zhonghui, Z. (2010). The Research of Fault Location of Transmission Line Based on Bergeron Model. International Conference on Advanced Computer Theory and Engineering (ICACTE) (s. V5-300-V5-304). Chengdu, China : IEEE Xplore.
Kadıoğlu, M. (2012). Türkiye'de iklim değişikliği risk yönetimi. Ankara: T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlğı.
Leonidopoulos, G. (2019). Analysis of Electric Power Transmission Line Presenting Only Long-Wise Inductance. Modelling, Measurement and Control, 94-97.
Luo, L. (2014). Research on grounding technique used in lightning protection of transmission line. BioTechnology, 8787-8794.
Malelak, M., & Zoro, R. (2017). Lightning Protection System for High Voltage Transmission Line in Area with High Grounding Resistance. International Conference on High Voltage Engineering and Power System (ICHVEPS) (s. 350-355). Denpasar, Indonesia: IEEE Xplore.
Mamiş, M., Arkan, M., & Keleş, C. (2013). Transmission Lines Fault Location Using Transient Signal Spectrum. International Journal of Electrical Power & Energy Systems, 714-718.
Mamiş, M., Kaygusuz, A., & Köksal, M. (2010). State Variable Distributed-Parameter Representation of Transmission Line for Transient Simulations. Turkish Journal of Electrical Engineering & Computer Science, 31-42.
Marshall, T., & Stolzenburg, M. (2001). Voltages inside and just above thunderstorms. Journal of Geophysical Research: Atmospheres, 106(D5), 4757-4768.
Martínez-Velasco, J. A., & Castro-Aranda, F. (2010). Modeling of overhead transmiıssion lines for lightning overvoltage calculations. Ingeniare. Revista chilena de ingeniería, 120-131.
MGM. (2025, 01 05). Yıldırım Takip Sistemi. T.C. ÇEVRE, ŞEHİRCİLİK VE İKLİM DEĞİŞİKLİĞİ BAKANLIĞI Meteoroloji Genel Müdürlüğü: https://www.mgm.gov.tr/sondurum/yildirim-takip.aspx adresinden alındı
Monzani, R. C., Prado, A. J., Kurokawa, S., Bovolato, L. F., & Filho, J. P. (2012). Using a Low Complexity Numeric Routine for Solving Electromagnetic Transient Simulations. V. Katsikis içinde, MATLAB - A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 3 (s. 463-484). Rijeka Hırvatistan: IntechOpen.
Nguyen, T., & Holt, R. (2003). Lightning protection of transmission lines: Optimal shielding design procedure. Generation, Transmission and Distribution, IEE Proceedings, 659-667.
Özen, Ş. (2017). Düşük Gerilim Güç Sistemleri. Ankara: TMMOB Elektrik Mühendisleri Odası.
Özen, Ş. (2021). Elektrik Elektronik Mühendisliğine Giriş. İstanbul: Birsen Yayınevi.
Öztopal, A. (2017, Mayıs 02). Türkiye’nin Yıldırım ve Şimşek Gözlemlerinin İncelenmesi. Dokuz Eylul University-Faculty of Engineering Journal of Science and Engineering, s. 304-313.
Price, C. (2009). Lightning: Principles, Instruments and Applications: Review of Modern Lightning Research. C. Price içinde, Thunderstorms, Lightning and Climate Change (s. 521-535). Dordrecht: Springer Netherlands.
Ravaglio, M. A., Küster, K. K., França Santos, S. L., Ribeiro Barrozo Toledo, L. F., Piantini, A., Lazzaretti, A. E., . . . da Silva Pinto, C. L. (2019). Evaluation of lightning-related faults that lead to distribution network outages: An experimental case study. Electric Power Systems Research, 174.
Shariatinasab , R., & Gholinezhad, J. (2017). The Effect of Grounding System Modeling on Lightning-Related Studies of Transmission Lines. Journal of Applied Research and Technology, 545–554.
Shehab, A. (2013). Design of Lightning Arresters for Electrical Power Systems Protection. Advances in Electrical and Electronic Engineering, 11(6), 433-442.
Silva, F. (2016). Comparison of Bergeron and Frequency-dependent cable models for the simulation of electromagnetic transients. 2016 51st International Universities Power Engineering Conference (UPEC) (s. 1-6). Coimbra: Portugal.
Silveira, F. H., Visacro, S., & Souza, R. E. (2017). Lightning performance of transmission lines: Assessing the quality of traditional methodologies to determine backflashover rate of transmission lines taking as reference results provided by an advanced approach. Electric Power Systems Research, 60-65.
Simka, P., Straumann, U., & Franck, C. (2012). SF6 high voltage circuit breaker contact systems under lightning impulse and very fast transient voltage stress,. IEEE Transactions on Dielectrics and Electrical Insulation, 855-864.
Suyaroj, N., Premrudeepreechacharn, S., & Watson, N. (2017). Transient state estimation with the Bergeron transmission line model. Turkish Journal of Electrical Engineering & Computer Sciences, 806-819.
Tilev-Tanriover, Ş., Kahraman, A., Kadıoğlu, M., & Schultz, D. (2015). Lightning fatalities and injuries in Turkey. Natural Hazards and Earth System Science, 1881-1888.
Tossani, F., Borghetti, A., Napolitano, F., Piantini, A., & Nucci, C. (2018). Lightning Performance of Overhead Power Distribution Lines in Urban Areas. IEEE Transactions on Power Delivery, 581-588.
Velasco, J. M. (2019). Transient Analysis of Power Systems: A Practical Approach. Barcelona: Wiley.
Visacro, S., Silveira, F. H., Vale, M. H., & Pomar, G. D. (2021). Improvement of the lightning performance of transmission lines by combining conventional and non-conventional measures. Electric Power Systems Research, 195.
Watson, N., & Arrillaga, J. (2003). Power Systems Electromagnetic Transients Simulation. London: UK: IE54.
Watson, N., & Yu, K. (2008). Transient State Estimation. 13th International Conference on Harmonics and Quality of Power (s. 1-6). Wollongong, NSW, Australia: IEEE.
Yan, K., Vukovic, A., & Sewell, P. (2024). Two-Dimensional Coupled Electrothermal Method Based on the Unstructured Transmission-Line Modelling Method for Lightning Protection Simulations. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 208-217.
Yoldaş, A. (2019). Yıldırım Elektromanyetik Darbelerinin Yüksek Gerilim Hatlarına Etkilerinin İzolatörler ve Topraklama Açısından İncelenmesi. Yüksek Lisans Tezi, Akdeniz Üniversitesi, Fen Bilimleri Enstitüsü. Antalya, Türkiye.
Yoldaş, A. Y., & Özen, Ş. (2023). Enerji İletim Hattı Güzergâh Seçiminde Yıldırım Faktörünün. ETUK VII. Elektrik Tesisleri Ulusal Kongre ve Sergisi (s. 1-9). İzmir, Türkiye: EMO.
Yu, K., & Watson, N. (2007). An Approximate Method for Transient State Estimation. IEEE Transactions on Power Delivery, 22(22), 1680-1687.
Yücelbaş, Ş., Erduman, A., Yücelbaş, C., & Yıldız, F. (2021). Pre-estimation of Distance-Based Lightning Using Effective Meteorological Parameters. Arabian Journal for Science and Engineering, 1529-1539.
Zhao , Z., Dang, D., Wu , G., Cao , X., Zhu, J., & Chen, L. (2011). Simulation Study on Transient Performance of Lightning Over-voltage of Transmission Lines. 7th Asia-Pacific International Conference on Lightning (s. 520-524). Chengdu, China: IEEE.
Zhao, Z., Dang, D., Wu, G., Cao, X., & Zhu, J. (2011). Simulation Study on Transient Performance of Lightning Over-voltage of Transmission Lines. 7th Asia-Pacific International Conference on Lightning (s. 520-524). Chengdu, China: IEEE.
Zhong, Y., Kang, X., & Jiao, Z. (2014). A novel distance protection algorithm for long-distance transmission lines. 12th IET International Conference on Developments in Power System Protection (DPSP 2014) (s. 1-5). Copenhagen, Denmark: IET.
YILDIRIM KAYNAKLI ENERJİ İLETİM HATTI ARIZALARININ İZOLATÖR BOYU VE TOPRAKLAMA DİRENCİ AÇISINDAN SINIR DEĞERLERİNİN BELİRLENMESİ
Yıldırım, doğanın en etkileyici fiziksel fenomenlerinden biri olarak, yüksek enerjiye sahip elektriksel boşalma olarak tanımlanabilir. Dünya üzerinde 3 milyar yıldan beri var olduğu düşünülen ve kontrolsüz elektrik hareketi olarak özetlenebilecek yıldırım, havai enerji iletim hatları için en büyük arıza kaynağıdır. Bu çalışmada işletmede bulunan ve yıllık bazda en fazla yıldırım alan mevcut enerji iletim hattı karakter özellikleriyle (direk temel topraklama direnci, izolatör boyu, koruma iletken tipi, iletken tipi) Bergeron Yöntemi ile PSCAD kullanılarak modellenmiştir. Meteoroloji Bölge Müdürlüğü’nden alınan yıldırım verilerine göre hangi yıldırım şiddetinde hatta arızanın meydana geldiği ve hattın enerjisiz kaldığı belirlenmiştir. Hattın işletmecisinden mesafe koruma rölesi arıza bilgileri alınarak arızanın oluştuğu direk belirlenmiştir. Bu veriler ışığında hazırlanan modele değişik akım şiddetlerinde yıldırım enjekte edilerek, yıldırım akım şiddeti, direk topraklama direnci ve izolatör boyu arasında korelasyon elde edilmiştir. Bu korelasyon sonucunda yıldırım akım şiddetine bağlı olarak, hangi izolatör boyunda ve direk toprak değerinde hatların enerjisiz kalıp kalmayacağı belirlenmiştir.
Agrawal, S., & Nigam, M. (2014). Lightning phenomena and its effect on transmission line. Recent Research in Science and Technology, 183-187.
Alves, M., Oliveira, B., Ferreira, D., Santos, A., Maia, W., Soares, W., . . . Pinto, O. (2025). An automated technique and decision support system for lightning early warning. International Journal of Environmental Science and Technology , 2289-2304.
Araneo, R., Celozzi, S., Brandão, J., Andreotti, A., & Verolino, L. (2019). Lightning Performance of Overhead Distribution Lines with Underbuilt Ground Wires. International Applied Computational Electromagnetics Society Symposium (ACES) (s. 1-2). Miami: IEEE.
Arı, M. (2012). 154/380 kv Enerji İletim Hatlari Proje Uygulamalari. Ankara: Karaca.
Chisholm, W. A., Petrache, E., & Bologna, F. (2010). Grounding of overhead transmission lines for improved lightning protection. IEEE PES Transmission and Distribution Conference and Exposition (s. 1-6). New Orleans: IEEE.
Chisholm, W., & Petrache, E. (2010). Grounding of overhead transmission lines for improved lightning protection. IEEE PES Transmission and Distribution Conference and Exposition: Smart Solutions for a Changing World. Bologna: IEEE.
Chowdhuri, P. (1990). Lightning-induced voltages on multiconductor overhead lines. IEEE Transactions on Power Delivery, 658-667.
Chowdhuri, P. (1996). Electromagnetic Transients in Power Systems (High-Voltage Power Transmission Series) . Tennessee: Research Studies Pre.
Chowdhuri, P., & Gross, E. T. (1967). Voltage surges induced on overhead lines by lightning strokes. Proceedings of the Institution of Electrical Engineers, 114(12).
Cooray, V. (1994). Calculating Lightning-Induced Overvoltages in Power Lines: A Comparison of Two Coupling Models. IEEE Transactions on Electromagnetic Compatibility, 179-182.
Dan, Y., Zhang, Z., Bu, S., Wong, C.-N., & Lin, P. (2024). Analysis of Grounding Performance of Tower Grounding Electrodes in Elevated Terrain. IEEE Transactions on Power Delivery, 3305-3315.
Djalel, D., Ali, H., & Fayçal, C. (2007). The Return-Stroke of Lightning Current, Source of Electromagnetic Fields (Study, Analysis and Modelling) . American Journal of Applied Sciences, 42-48.
Dommel, H. (1969). Digital Computer Solution of Electromagnetic Transients in Single- and Multiphase Networks. IEEE Transactions on Power Apparatus and Systems, 388-399.
Enyong, P. (2017). Performance of a Developed Short Transmission Line Module: A Survey of Load Power-Factor Effects. London Journals of Engineering Research, 7-18.
Erduman, A., & Yıldız, F. (2019). IEC62305-2’ye Göre Yıldırım Risk Analizi: Hakkâri Üniversitesi Örneği. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 58-65.
Farzanehrafat, A., & Watson, N. (2013). Power Quality State Estimator for Smart Distribution Grids. IEEE Transactions on Power Systems, 2183-2191.
Furgal, J. (2020). Influence of Lightning Current Model on Simulations of Overvoltages in High Voltage Overhead Transmission Systems. Energies, 13(2), 1-10.
Hardi, S., Mirza, F., Bukit, F., & Rohana, R. (2021). Influence of Lightning Characteristics on Back Flashover in Extra High Voltage Transmission Line: A case study. Journal of Physics, 1811.
Holle, R. L. (2008). Annual rates of lightning fatalities by country. 20th International Lightning Detect,on Conference (s. 1-14). Tucson, Arizona: mtmt.
IEEE Standard 1410. (2010, 9 30). IEEE 1410-2010. Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines. IEEE.
Izadi, M., Abd Rahman, M., & Zaina, M. (2017). The influence of lightning induced voltage on the distribution power line polymer insulators. PLoS ONE, 12(2).
Jernegan, M. (1928). Benjamin Franklin's "Electrical Kite" and Lightning Rod. The New England Quarterly, 180-196.
Joseph R. Dwyer, Martin A. Uman. (2014). The physics of lightning. Atmospheric Research, 147-241.
Junzhang, O., & Zhonghui, Z. (2010). The Research of Fault Location of Transmission Line Based on Bergeron Model. International Conference on Advanced Computer Theory and Engineering (ICACTE) (s. V5-300-V5-304). Chengdu, China : IEEE Xplore.
Kadıoğlu, M. (2012). Türkiye'de iklim değişikliği risk yönetimi. Ankara: T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlğı.
Leonidopoulos, G. (2019). Analysis of Electric Power Transmission Line Presenting Only Long-Wise Inductance. Modelling, Measurement and Control, 94-97.
Luo, L. (2014). Research on grounding technique used in lightning protection of transmission line. BioTechnology, 8787-8794.
Malelak, M., & Zoro, R. (2017). Lightning Protection System for High Voltage Transmission Line in Area with High Grounding Resistance. International Conference on High Voltage Engineering and Power System (ICHVEPS) (s. 350-355). Denpasar, Indonesia: IEEE Xplore.
Mamiş, M., Arkan, M., & Keleş, C. (2013). Transmission Lines Fault Location Using Transient Signal Spectrum. International Journal of Electrical Power & Energy Systems, 714-718.
Mamiş, M., Kaygusuz, A., & Köksal, M. (2010). State Variable Distributed-Parameter Representation of Transmission Line for Transient Simulations. Turkish Journal of Electrical Engineering & Computer Science, 31-42.
Marshall, T., & Stolzenburg, M. (2001). Voltages inside and just above thunderstorms. Journal of Geophysical Research: Atmospheres, 106(D5), 4757-4768.
Martínez-Velasco, J. A., & Castro-Aranda, F. (2010). Modeling of overhead transmiıssion lines for lightning overvoltage calculations. Ingeniare. Revista chilena de ingeniería, 120-131.
MGM. (2025, 01 05). Yıldırım Takip Sistemi. T.C. ÇEVRE, ŞEHİRCİLİK VE İKLİM DEĞİŞİKLİĞİ BAKANLIĞI Meteoroloji Genel Müdürlüğü: https://www.mgm.gov.tr/sondurum/yildirim-takip.aspx adresinden alındı
Monzani, R. C., Prado, A. J., Kurokawa, S., Bovolato, L. F., & Filho, J. P. (2012). Using a Low Complexity Numeric Routine for Solving Electromagnetic Transient Simulations. V. Katsikis içinde, MATLAB - A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 3 (s. 463-484). Rijeka Hırvatistan: IntechOpen.
Nguyen, T., & Holt, R. (2003). Lightning protection of transmission lines: Optimal shielding design procedure. Generation, Transmission and Distribution, IEE Proceedings, 659-667.
Özen, Ş. (2017). Düşük Gerilim Güç Sistemleri. Ankara: TMMOB Elektrik Mühendisleri Odası.
Özen, Ş. (2021). Elektrik Elektronik Mühendisliğine Giriş. İstanbul: Birsen Yayınevi.
Öztopal, A. (2017, Mayıs 02). Türkiye’nin Yıldırım ve Şimşek Gözlemlerinin İncelenmesi. Dokuz Eylul University-Faculty of Engineering Journal of Science and Engineering, s. 304-313.
Price, C. (2009). Lightning: Principles, Instruments and Applications: Review of Modern Lightning Research. C. Price içinde, Thunderstorms, Lightning and Climate Change (s. 521-535). Dordrecht: Springer Netherlands.
Ravaglio, M. A., Küster, K. K., França Santos, S. L., Ribeiro Barrozo Toledo, L. F., Piantini, A., Lazzaretti, A. E., . . . da Silva Pinto, C. L. (2019). Evaluation of lightning-related faults that lead to distribution network outages: An experimental case study. Electric Power Systems Research, 174.
Shariatinasab , R., & Gholinezhad, J. (2017). The Effect of Grounding System Modeling on Lightning-Related Studies of Transmission Lines. Journal of Applied Research and Technology, 545–554.
Shehab, A. (2013). Design of Lightning Arresters for Electrical Power Systems Protection. Advances in Electrical and Electronic Engineering, 11(6), 433-442.
Silva, F. (2016). Comparison of Bergeron and Frequency-dependent cable models for the simulation of electromagnetic transients. 2016 51st International Universities Power Engineering Conference (UPEC) (s. 1-6). Coimbra: Portugal.
Silveira, F. H., Visacro, S., & Souza, R. E. (2017). Lightning performance of transmission lines: Assessing the quality of traditional methodologies to determine backflashover rate of transmission lines taking as reference results provided by an advanced approach. Electric Power Systems Research, 60-65.
Simka, P., Straumann, U., & Franck, C. (2012). SF6 high voltage circuit breaker contact systems under lightning impulse and very fast transient voltage stress,. IEEE Transactions on Dielectrics and Electrical Insulation, 855-864.
Suyaroj, N., Premrudeepreechacharn, S., & Watson, N. (2017). Transient state estimation with the Bergeron transmission line model. Turkish Journal of Electrical Engineering & Computer Sciences, 806-819.
Tilev-Tanriover, Ş., Kahraman, A., Kadıoğlu, M., & Schultz, D. (2015). Lightning fatalities and injuries in Turkey. Natural Hazards and Earth System Science, 1881-1888.
Tossani, F., Borghetti, A., Napolitano, F., Piantini, A., & Nucci, C. (2018). Lightning Performance of Overhead Power Distribution Lines in Urban Areas. IEEE Transactions on Power Delivery, 581-588.
Velasco, J. M. (2019). Transient Analysis of Power Systems: A Practical Approach. Barcelona: Wiley.
Visacro, S., Silveira, F. H., Vale, M. H., & Pomar, G. D. (2021). Improvement of the lightning performance of transmission lines by combining conventional and non-conventional measures. Electric Power Systems Research, 195.
Watson, N., & Arrillaga, J. (2003). Power Systems Electromagnetic Transients Simulation. London: UK: IE54.
Watson, N., & Yu, K. (2008). Transient State Estimation. 13th International Conference on Harmonics and Quality of Power (s. 1-6). Wollongong, NSW, Australia: IEEE.
Yan, K., Vukovic, A., & Sewell, P. (2024). Two-Dimensional Coupled Electrothermal Method Based on the Unstructured Transmission-Line Modelling Method for Lightning Protection Simulations. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 208-217.
Yoldaş, A. (2019). Yıldırım Elektromanyetik Darbelerinin Yüksek Gerilim Hatlarına Etkilerinin İzolatörler ve Topraklama Açısından İncelenmesi. Yüksek Lisans Tezi, Akdeniz Üniversitesi, Fen Bilimleri Enstitüsü. Antalya, Türkiye.
Yoldaş, A. Y., & Özen, Ş. (2023). Enerji İletim Hattı Güzergâh Seçiminde Yıldırım Faktörünün. ETUK VII. Elektrik Tesisleri Ulusal Kongre ve Sergisi (s. 1-9). İzmir, Türkiye: EMO.
Yu, K., & Watson, N. (2007). An Approximate Method for Transient State Estimation. IEEE Transactions on Power Delivery, 22(22), 1680-1687.
Yücelbaş, Ş., Erduman, A., Yücelbaş, C., & Yıldız, F. (2021). Pre-estimation of Distance-Based Lightning Using Effective Meteorological Parameters. Arabian Journal for Science and Engineering, 1529-1539.
Zhao , Z., Dang, D., Wu , G., Cao , X., Zhu, J., & Chen, L. (2011). Simulation Study on Transient Performance of Lightning Over-voltage of Transmission Lines. 7th Asia-Pacific International Conference on Lightning (s. 520-524). Chengdu, China: IEEE.
Zhao, Z., Dang, D., Wu, G., Cao, X., & Zhu, J. (2011). Simulation Study on Transient Performance of Lightning Over-voltage of Transmission Lines. 7th Asia-Pacific International Conference on Lightning (s. 520-524). Chengdu, China: IEEE.
Zhong, Y., Kang, X., & Jiao, Z. (2014). A novel distance protection algorithm for long-distance transmission lines. 12th IET International Conference on Developments in Power System Protection (DPSP 2014) (s. 1-5). Copenhagen, Denmark: IET.
Toplam 60 adet kaynakça vardır.
Ayrıntılar
Birincil Dil
Türkçe
Konular
Elektrik Enerjisi Taşıma, Şebeke ve Sistemleri, Elektrik Tesisleri, Yüksek Gerilim, Elektrik Mühendisliği (Diğer)
Yoldaş, A. Y., Carlak, H. F., & Özen, Ş. (2025). YILDIRIM KAYNAKLI ENERJİ İLETİM HATTI ARIZALARININ İZOLATÖR BOYU VE TOPRAKLAMA DİRENCİ AÇISINDAN SINIR DEĞERLERİNİN BELİRLENMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 13(1), 286-305. https://doi.org/10.21923/jesd.1615472