Araştırma Makalesi
BibTex RIS Kaynak Göster

THE DEVELOPMENT OF FABRICS THAT CAN OFFER PHOTO-THERMAL CONVERSION PERFORMANCE AND THERMAL COMFORT THROUGH MICROCAPSULES APPLICATION

Yıl 2025, Cilt: 13 Sayı: 3, 911 - 920, 30.09.2025
https://doi.org/10.21923/jesd.1673209

Öz

In this study, it was aimed to develop textile materials that can offer photothermal conversion performance and thermal comfort properties by using microcapsule technology. For this aim, chitosan/sodium alginate walled phase change microcapsules coated with ZnO nanoparticles were applied to cotton woven fabrics by padding method. The application was carried out at two different concentrations, 100 g/l and 150 g/l. The morphology, photo-thermal conversion performance and thermal comfort properties of fabrics treated with microcapsules were investigated. In the study, properties such as air permeability, bending rigidity, and tear strength which were important in determining the suitability of fabrics for end use were also investigated, and the effect of microcapsule concentration on these properties was examined. The application of microcapsules coated with ZnO nanomaterials, which possess the ability to absorb ultraviolet (UV) light and convert it into heat has given fabrics the ability to make photothermal conversion. The thermal conductivity of the fabrics treated with microcapsules in comparison to the untreated fabric increased in relation to the high-conductivity ZnO nanoparticles in the microcapsule structure; conversely, their thermal resistance decreased. While a significant decrease in air permeability of the fabrics was observed after microcapsule application in relation to the microcapsule concentration compared to the untreated fabric, no significant change was observed in bending rigidity and tear strength of fabrics.

Kaynakça

  • Alay, S., Alkan, C., Göde, F., 2012. Steady-state thermal comfort properties of fabrics incorporated with microencapsulated phase change materials. Journal of the Textile Institute, 103 (7), 757-765.
  • Bulut, Y., Sülar, V., 2008. General properties and performence tests of fabrics produced by coating and lamination techniques. Journal of Textiles and Engineer, 15(70), 5-16.
  • Chai, Z., Fang, M., Min, X., 2024. Composite phase-change materials for photo-thermal conversion and energy storage: A review. Nano Energy, 109437.
  • Chen, L., Zou, R., Xia, W., Liu, Z., Shang, Y., Zhu, J., Wang, Y., Lin, J., Xia, D., Cao, A., 2012. Electro-and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges, ACS Nano, 6, 10884–10892.
  • Chen, H., Liu, X., Zhao, K., Wang, J., Xie, H., 2024. Preparation of PW@ CaCO3 phase change microcapsules modified by ZnO nanoparticles with excellent photocatalytic and thermal properties. Journal of Energy Storage, 77, 109942.
  • Deng, G., Yang, Y., Lu, S., Ma, L., Wu, G., 2024. Silk Fabrics Modified with Photothermal Phase Change Microcapsules for Personal Thermal Management. International Journal of Nanomedicine, 8485-8499.
  • Fan, R., Zheng, N., Sun, Z., 2022. A modified method to quantify the photo-thermal conversion efficiency of shape-stable phase change materials. Solar Energy Materials and Solar Cells, 237, 111572.
  • Fan, X.Q., Liu, L., Jin, X., Wang, W.T., Zhang, S.F., Tang, B.T., 2019. MXene Ti3C2Tx for phase change composite with superior photothermal storage capability. Journal of Materials Chemistry A, 7, 14319–14327.
  • Fridrichová, L., 2013. A new method of measuring the bending rigidity of fabrics and its application to the determination of the their anisotropy. Textile Research Journal, 83, 883.
  • Hu, L., Li, X., Ding, L., Chen, L., Zhu, X., Mao, Z., Feng, X., Sui, X., Wang, B., 2021. Flexible textiles with polypyrrole deposited phase change microcapsules for efficient photothermal energy conversion and storage. Solar Energy Materials and Solar Cells, 224, 110985.
  • Kang, M., Liu, Y., Lin, W., Liang, C., Qu, W., Li, S., Wang, Y., Zhang, F., Cheng, J., 2023. Thermal comfort and flame retardant performance of novel temperature-control coatings with modified phase change material microcapsules. Progress in Organic Coatings, 181, 107579.
  • Kim, J., Cho, G., 2002. Thermal storage/release, durability, and temperature sensing properties of thermostatic fabrics treated with octadecane-containing microcapsules. Textile Research Journal, 72 (12), 1093-1098.
  • Lei, H., Fu, C.F., Zou, Y.J., Guo, S.Y., Huo, J.C., 2019. A thermal energy storage composite with sensing function and its thermal conductivity and thermal effusivity enhancement. Journal of Materials Chemistry A, 7, 6720–6729.
  • Li, L., Song, L., Hua, T., Man Au, W., Wong K.S., 2013. Characteristics of weaving parameters in microcapsulefabrics and their influence on loading capability. TextileResearch Journal, 83, 113–121.
  • Li, G.Y., Zhang, X.T., Wang, J., Fang, J.H., 2016. From anisotropic graphene aerogels to electron- and photo driven phase change composites. Journal of Materials Chemistry A, 4, 17042–17049.
  • Li, S., Ji, W., Zou, L., Li, L., Li, Y., Cheng, X., 2022. Crystalline TiO2 shell microcapsules modified by Co3O4/GO nanocomposites for thermal energy storage and photocatalysis. Materials Today Sustainability, 19, 100197.
  • Li, J., Zhu, X., Wang, H., Lin, P., Jia, L., Li, L., Chen, Y., 2021. Synthesis and properties of multifunctional microencapsulated phase change material for intelligent textiles. Journal of Materials Science, 56 (3), 2176-2191.
  • Liu, X.Y., Jin, X.X. Li, L., Wang, J.F., Yang, Y.Y., Cao, Y.X., Wang, W.J., 2020. Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance. Journal of Materials Chemistry A, 8, 12526–12537.
  • Liu, H., Shen, H., Zhang, H., Wang, X., 2022. Development of photoluminescence phase-change microcapsules for comfort thermal regulation and fluorescent recognition applications in advanced textiles. Journal of Energy Storage, 49, 104158.
  • Liu, H., Wang, X., Wu, D., & Ji, S., 2019. Fabrication and applications of dual-responsive microencapsulated phase change material with enhanced solar energy-storage and solar photocatalytic effectiveness. Solar Energy Materials and Solar Cells, 193, 184-197.
  • Liu, H., Tian, X., Ouyang, M., Wang, X., Wu, D., Wang, X., 2021. Microencapsulating n-docosane phase change material into CaCO3/Fe3O4 composites for high-efficient utilization of solar photothermal energy. Renewable Energy, 179, 47-64.
  • Ma, Z.H., Yu, D.G., Branford-White, C.J., Nie, H.L., Fan, Z.X., Zhu, L.M., 2009. Microencapsulation of tamoxifen: Application to cotton fabric. Colloids and Surfaces B: Biointerfaces, 69(1), 85-90.
  • Ma, X., Liu, Y., Liu, H., Zhang, L., Xu, B., Xiao, F., 2018. Fabrication of novel slurry containing graphene oxide-modified microencapsulated phase change material for direct absorption solar collector. Solar Energy Materials and Solar Cells, 188, 73-80.
  • Maithya, O.M., Zhu, X., Li, X., Korir, S.J., Feng, X., Sui, X., Wang, B., 2021. High-energy storage graphene oxide modified phase change microcapsules from regenerated chitin Pickering Emulsion for photothermal conversion. Solar Energy Materials and Solar Cells, 222, 110924.
  • Mangat, M.M., Hes, L., Bajzík, V. 2015. Thermal resistance models of selected fabrics in wet state and their experimental verification. Textile Research Journal, 85(2), 200-210.
  • Mangat, A., Hes, L., Bajzik, V., 2017. Effect of biopolishing on warm–cool feeling of knitted fabric: a subjective and an objective evaluations. Autex Research Journal, 17 (2), 95-102.
  • Mondal, S., 2008., Phase Change Materials for Smart Textiles-an Overview. Applied Thermal Engineering, 28, 1536-50
  • Niu, S., Kang, M., Liu, Y., Lin, W., Liang, C., Zhao, Y., Cheng, J., 2023. The preparation and characterization of phase change material microcapsules with multifunctional carbon nanotubes for controlling temperature. Energy, 268, 126652.
  • Noman, M.T., Petru, M., Amor, N., Yang, T., Mansoor, T. (2020). Thermophysiological comfort of sonochemically synthesized nano TiO2 coated woven fabrics. Scientific Reports, 10(1), 17204.
  • Reddy, V. J., Ghazali, M. F., Kumarasamy, S., 2024. Advancements in phase change materials for energy-efficient building construction: A comprehensive review. Journal of Energy Storage, 81, 110494.
  • Salaün, F., Devaux, E., Bourbigot, S., Rumeau, P., 2010. Thermoregulating response of cotton fabric containing microencapsulated phase change materials. Thermochimica Acta, 506, (1-2), 82-93.
  • Sapancı, B., Üstüntağ, S., Güneşoğlu, C. 2024. Development of thermo-regulating mattress fabrics by application microcapsules containing n-hexadecane/n-octadecane coated with gum arabic/gelatin. The Journal of The Textile Institute, 1-11.
  • Shahid, M. A., Hossain, M. T., Hossain, I., Limon, M. G. M., Rabbani, M., Rahim, A., 2024. Research and development on phase change material-integrated cloth: A review. Journal of Industrial Textiles, 54, 15280837241262518.
  • Shin, Y., Yoo, D. I., Son, K., 2005. Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). IV. Performance properties and hand of fabrics treated with PCM microcapsules. Journal of Applied Polymer Science, 97 (3), 910-915.
  • Sun, Z., Shi, T., Wang, Y., Li, J., Liu, H., Wang, X., 2022. Hierarchical microencapsulation of phase change material with carbon-nanotubes/polydopamine/silica shell for synergistic enhancement of solar photothermal conversion and storage. Solar Energy Materials and Solar Cells, 236, 111539.
  • Sun, W., Zhang, Z., Zhang, Z., He, N., Wei, Q., Feng, L., Wang, Z., Wu, J., Liu, C., Fu, S., Hou, Y., Sebe, G., Zhou, G., 2024. Photothermal phase change material microcapsules via cellulose nanocrystal and graphene oxide co-stabilized Pickering emulsion for solar and thermal energy storage. Science China Materials, 67 (10), 3225-3235.
  • Süle, G., 2012. Investigation of bending and drape properties of woven fabrics and the effects of fabric constructional parameters and warp tension on these properties. Textile Research Journal, 82 (8), 810-819.
  • Tariq, H., Rehman, A., Kishwar, F., Raza, Z.A. 2022. Citric acid cross-linking of chitosan encapsulated spearmint oil for antibacterial cellulosic fabric. Polymer Science, Series A, 64 (5), 456-466.
  • Tohidi, S.D., Jeddi, A.A., Nosrati, H., 2013. Analyzing of the Woven Fabric Geometry on the Bending Rigidity Properties. International Journal of Textile Science, 2 (4), 73-80.
  • Tözüm, M.S., Alay Aksoy, S. 2016. Investigation of tactile comfort properties of the fabrics treated with microcapsules containing phase change materials (PCMs microcapsules). The Journal of The Textile Institute, 107(9), 1203-1212.
  • Tözüm, M.S., 2024. Preparation and characterisation of ZnO nanoparticle-coated chitosan/sodium alginate walled energy-storing composite microcapsules. International Ceramics and Composite Materials Symposium, November 15-16, 108-115, Süleyman Demirel University, Isparta, Türkiye.
  • Wang, W., Cai, Y., Du, M., Hou, X., Liu, J., Ke, H., Wei, Q., 2019. Ultralight and flexible carbon foam-based phase change composites with high latent-heat capacity and photothermal conversion capability. ACS applied materials interfaces, 11 (35), 31997-32007.
  • Wang, X., Li, C., Zhao, T., 2018. Fabrication and characterization of poly (melamine-formaldehyde)/silicon carbide hybrid microencapsulated phase change materials with enhanced thermal conductivity and light-heat performance. Solar Energy Materials and Solar Cells, 183, 82-91.
  • Wang, X., Zhang, C., Wang, K., Huang, Y., Chen, Z., 2021. Highly efficient photothermal conversion capric acid phase change microcapsule: Silicon carbide modified melamine urea formaldehyde. Journal of Colloid and Interface Science, 582, 30-40.
  • Wu, H.Y., Chen, R.T., Shao, Y.W., Qi, X.D., Yang, J.H., Wang, Y., 2019. Novel flexible phase change materials with mussel-inspired modification of melamine foam for simultaneous light-actuated shape memory and light-to-thermal energy storage capability. ACS Sustainable Chemistry & Engineering, 7, 13532–13542. Ye, W., Xin, J.H., Li, P., Lee, K.L.D. Kwong, T.L., 2006. Durable antibacterial finish on cotton fabric by using chitosan-based polymeric core-shell particles. Journal of Applied Polymer Science, 102 (2), 1787-1793.
  • Yuan, Z., Shi, X., Chen, K., 2024. Preparation and characterization of chitosan/ZnO-Ag composite microcapsules and their applications in solar energy harvesting and electromagnetic interference shielding. International Journal of Biological Macromolecules, 263, 130285.
  • Zhang, J., Zhang, Y., Wu, S., Ji, Y., Mao, Z., Wang, D., Xu, Z., Wei, Q, Feng, Q., 2024. Weavable coaxial phase change fibers concentrating thermal energy storage, photothermal conversion and thermochromic responsiveness toward smart thermoregulatory textiles. Chemical Engineering Journal, 483, 149281.
  • Zhou, Y., Liu, X.D., Sheng, D.K., Lin, C.H., Ji, F., Dong, L., Xu, S.B., Wu, H.H., Yang, Y.M., 2018. Polyurethane-based solid-solid phase change materials with in situ reduced graphene oxide for light-thermal energy conversion and storage. Chemical Engineering Journal, 338, 117–125. Zhu, Y., Liang, S., Wang, H., Zhang, K., Jia, X., Tian, C., Zhou, Y., Wang, J., 2016. Morphological control and thermal properties of nanoencapsulated n-octadecane phase change material with organosilica shell materials. Energy Conversion and Management, 119, 151-162.

MİKROKAPSÜL APLİKASYONU İLE FOTO-TERMAL DÖNÜŞÜM PERFORMANSI VE ISIL KONFOR SUNABİLEN KUMAŞLARIN GELİŞTİRİLMESİ

Yıl 2025, Cilt: 13 Sayı: 3, 911 - 920, 30.09.2025
https://doi.org/10.21923/jesd.1673209

Öz

Çalışmada, mikrokapsül teknolojisi kullanılarak foto-termal dönüşüm performansı ve ısıl konfor özellikleri sunabilen tekstil materyallerinin geliştirilmesi amaçlanmıştır. Bu amaçla, ZnO nanopartiküller ile kaplanmış kitosan/sodyum alginat duvarlı faz değiştiren mikrokapsüller, pamuklu dokuma kumaşlara emdirme yöntemi ile uygulanmıştır. Uygulama, 100 g/l ve 150 g/l olmak üzere iki farklı konsantrasyonda gerçekleştirilmiştir. Mikrokapsül uygulanmış kumaşların morfolojileri, foto-termal dönüşüm performansları ve ısıl konfor özellikleri araştırılmıştır. Çalışmada ayrıca, kumaşların son kullanım için uygunluğunun belirlenmesinde önemli olan hava geçirgenliği, eğilme rijitliği ve yırtılma mukavemeti gibi özellikler de araştırılmış ve mikrokapsül konsantrasyonunun bu özellikler üzerindeki etkisi incelenmiştir. UV ışığını absorblayarak ısıya dönüştürebilen ZnO nanomateryaller ile kaplı mikrokapsüllerin kumaşlara uygulanması, kumaşlara foto-termal dönüşüm yapabilme yeteneği kazandırmıştır. Mikrokapsül uygulanan kumaşların ısıl iletkenlikleri, kapsül yapısındaki yüksek iletkenliğe sahip ZnO nanopartiküller ile ilişkili olarak ham kumaşa göre artarken, ısıl dirençleri azalmıştır. Mikrokapsül uygulama sonrası kumaşların hava geçirgenliklerinde kapsül konsantrasyonuyla ilişkili olarak ham kumaşa kıyasla önemli bir azalma gözlenirken, eğilme dayanımı ve yırtılma mukavemetlerinde önemli bir değişim gözlenmemiştir.

Kaynakça

  • Alay, S., Alkan, C., Göde, F., 2012. Steady-state thermal comfort properties of fabrics incorporated with microencapsulated phase change materials. Journal of the Textile Institute, 103 (7), 757-765.
  • Bulut, Y., Sülar, V., 2008. General properties and performence tests of fabrics produced by coating and lamination techniques. Journal of Textiles and Engineer, 15(70), 5-16.
  • Chai, Z., Fang, M., Min, X., 2024. Composite phase-change materials for photo-thermal conversion and energy storage: A review. Nano Energy, 109437.
  • Chen, L., Zou, R., Xia, W., Liu, Z., Shang, Y., Zhu, J., Wang, Y., Lin, J., Xia, D., Cao, A., 2012. Electro-and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges, ACS Nano, 6, 10884–10892.
  • Chen, H., Liu, X., Zhao, K., Wang, J., Xie, H., 2024. Preparation of PW@ CaCO3 phase change microcapsules modified by ZnO nanoparticles with excellent photocatalytic and thermal properties. Journal of Energy Storage, 77, 109942.
  • Deng, G., Yang, Y., Lu, S., Ma, L., Wu, G., 2024. Silk Fabrics Modified with Photothermal Phase Change Microcapsules for Personal Thermal Management. International Journal of Nanomedicine, 8485-8499.
  • Fan, R., Zheng, N., Sun, Z., 2022. A modified method to quantify the photo-thermal conversion efficiency of shape-stable phase change materials. Solar Energy Materials and Solar Cells, 237, 111572.
  • Fan, X.Q., Liu, L., Jin, X., Wang, W.T., Zhang, S.F., Tang, B.T., 2019. MXene Ti3C2Tx for phase change composite with superior photothermal storage capability. Journal of Materials Chemistry A, 7, 14319–14327.
  • Fridrichová, L., 2013. A new method of measuring the bending rigidity of fabrics and its application to the determination of the their anisotropy. Textile Research Journal, 83, 883.
  • Hu, L., Li, X., Ding, L., Chen, L., Zhu, X., Mao, Z., Feng, X., Sui, X., Wang, B., 2021. Flexible textiles with polypyrrole deposited phase change microcapsules for efficient photothermal energy conversion and storage. Solar Energy Materials and Solar Cells, 224, 110985.
  • Kang, M., Liu, Y., Lin, W., Liang, C., Qu, W., Li, S., Wang, Y., Zhang, F., Cheng, J., 2023. Thermal comfort and flame retardant performance of novel temperature-control coatings with modified phase change material microcapsules. Progress in Organic Coatings, 181, 107579.
  • Kim, J., Cho, G., 2002. Thermal storage/release, durability, and temperature sensing properties of thermostatic fabrics treated with octadecane-containing microcapsules. Textile Research Journal, 72 (12), 1093-1098.
  • Lei, H., Fu, C.F., Zou, Y.J., Guo, S.Y., Huo, J.C., 2019. A thermal energy storage composite with sensing function and its thermal conductivity and thermal effusivity enhancement. Journal of Materials Chemistry A, 7, 6720–6729.
  • Li, L., Song, L., Hua, T., Man Au, W., Wong K.S., 2013. Characteristics of weaving parameters in microcapsulefabrics and their influence on loading capability. TextileResearch Journal, 83, 113–121.
  • Li, G.Y., Zhang, X.T., Wang, J., Fang, J.H., 2016. From anisotropic graphene aerogels to electron- and photo driven phase change composites. Journal of Materials Chemistry A, 4, 17042–17049.
  • Li, S., Ji, W., Zou, L., Li, L., Li, Y., Cheng, X., 2022. Crystalline TiO2 shell microcapsules modified by Co3O4/GO nanocomposites for thermal energy storage and photocatalysis. Materials Today Sustainability, 19, 100197.
  • Li, J., Zhu, X., Wang, H., Lin, P., Jia, L., Li, L., Chen, Y., 2021. Synthesis and properties of multifunctional microencapsulated phase change material for intelligent textiles. Journal of Materials Science, 56 (3), 2176-2191.
  • Liu, X.Y., Jin, X.X. Li, L., Wang, J.F., Yang, Y.Y., Cao, Y.X., Wang, W.J., 2020. Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance. Journal of Materials Chemistry A, 8, 12526–12537.
  • Liu, H., Shen, H., Zhang, H., Wang, X., 2022. Development of photoluminescence phase-change microcapsules for comfort thermal regulation and fluorescent recognition applications in advanced textiles. Journal of Energy Storage, 49, 104158.
  • Liu, H., Wang, X., Wu, D., & Ji, S., 2019. Fabrication and applications of dual-responsive microencapsulated phase change material with enhanced solar energy-storage and solar photocatalytic effectiveness. Solar Energy Materials and Solar Cells, 193, 184-197.
  • Liu, H., Tian, X., Ouyang, M., Wang, X., Wu, D., Wang, X., 2021. Microencapsulating n-docosane phase change material into CaCO3/Fe3O4 composites for high-efficient utilization of solar photothermal energy. Renewable Energy, 179, 47-64.
  • Ma, Z.H., Yu, D.G., Branford-White, C.J., Nie, H.L., Fan, Z.X., Zhu, L.M., 2009. Microencapsulation of tamoxifen: Application to cotton fabric. Colloids and Surfaces B: Biointerfaces, 69(1), 85-90.
  • Ma, X., Liu, Y., Liu, H., Zhang, L., Xu, B., Xiao, F., 2018. Fabrication of novel slurry containing graphene oxide-modified microencapsulated phase change material for direct absorption solar collector. Solar Energy Materials and Solar Cells, 188, 73-80.
  • Maithya, O.M., Zhu, X., Li, X., Korir, S.J., Feng, X., Sui, X., Wang, B., 2021. High-energy storage graphene oxide modified phase change microcapsules from regenerated chitin Pickering Emulsion for photothermal conversion. Solar Energy Materials and Solar Cells, 222, 110924.
  • Mangat, M.M., Hes, L., Bajzík, V. 2015. Thermal resistance models of selected fabrics in wet state and their experimental verification. Textile Research Journal, 85(2), 200-210.
  • Mangat, A., Hes, L., Bajzik, V., 2017. Effect of biopolishing on warm–cool feeling of knitted fabric: a subjective and an objective evaluations. Autex Research Journal, 17 (2), 95-102.
  • Mondal, S., 2008., Phase Change Materials for Smart Textiles-an Overview. Applied Thermal Engineering, 28, 1536-50
  • Niu, S., Kang, M., Liu, Y., Lin, W., Liang, C., Zhao, Y., Cheng, J., 2023. The preparation and characterization of phase change material microcapsules with multifunctional carbon nanotubes for controlling temperature. Energy, 268, 126652.
  • Noman, M.T., Petru, M., Amor, N., Yang, T., Mansoor, T. (2020). Thermophysiological comfort of sonochemically synthesized nano TiO2 coated woven fabrics. Scientific Reports, 10(1), 17204.
  • Reddy, V. J., Ghazali, M. F., Kumarasamy, S., 2024. Advancements in phase change materials for energy-efficient building construction: A comprehensive review. Journal of Energy Storage, 81, 110494.
  • Salaün, F., Devaux, E., Bourbigot, S., Rumeau, P., 2010. Thermoregulating response of cotton fabric containing microencapsulated phase change materials. Thermochimica Acta, 506, (1-2), 82-93.
  • Sapancı, B., Üstüntağ, S., Güneşoğlu, C. 2024. Development of thermo-regulating mattress fabrics by application microcapsules containing n-hexadecane/n-octadecane coated with gum arabic/gelatin. The Journal of The Textile Institute, 1-11.
  • Shahid, M. A., Hossain, M. T., Hossain, I., Limon, M. G. M., Rabbani, M., Rahim, A., 2024. Research and development on phase change material-integrated cloth: A review. Journal of Industrial Textiles, 54, 15280837241262518.
  • Shin, Y., Yoo, D. I., Son, K., 2005. Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). IV. Performance properties and hand of fabrics treated with PCM microcapsules. Journal of Applied Polymer Science, 97 (3), 910-915.
  • Sun, Z., Shi, T., Wang, Y., Li, J., Liu, H., Wang, X., 2022. Hierarchical microencapsulation of phase change material with carbon-nanotubes/polydopamine/silica shell for synergistic enhancement of solar photothermal conversion and storage. Solar Energy Materials and Solar Cells, 236, 111539.
  • Sun, W., Zhang, Z., Zhang, Z., He, N., Wei, Q., Feng, L., Wang, Z., Wu, J., Liu, C., Fu, S., Hou, Y., Sebe, G., Zhou, G., 2024. Photothermal phase change material microcapsules via cellulose nanocrystal and graphene oxide co-stabilized Pickering emulsion for solar and thermal energy storage. Science China Materials, 67 (10), 3225-3235.
  • Süle, G., 2012. Investigation of bending and drape properties of woven fabrics and the effects of fabric constructional parameters and warp tension on these properties. Textile Research Journal, 82 (8), 810-819.
  • Tariq, H., Rehman, A., Kishwar, F., Raza, Z.A. 2022. Citric acid cross-linking of chitosan encapsulated spearmint oil for antibacterial cellulosic fabric. Polymer Science, Series A, 64 (5), 456-466.
  • Tohidi, S.D., Jeddi, A.A., Nosrati, H., 2013. Analyzing of the Woven Fabric Geometry on the Bending Rigidity Properties. International Journal of Textile Science, 2 (4), 73-80.
  • Tözüm, M.S., Alay Aksoy, S. 2016. Investigation of tactile comfort properties of the fabrics treated with microcapsules containing phase change materials (PCMs microcapsules). The Journal of The Textile Institute, 107(9), 1203-1212.
  • Tözüm, M.S., 2024. Preparation and characterisation of ZnO nanoparticle-coated chitosan/sodium alginate walled energy-storing composite microcapsules. International Ceramics and Composite Materials Symposium, November 15-16, 108-115, Süleyman Demirel University, Isparta, Türkiye.
  • Wang, W., Cai, Y., Du, M., Hou, X., Liu, J., Ke, H., Wei, Q., 2019. Ultralight and flexible carbon foam-based phase change composites with high latent-heat capacity and photothermal conversion capability. ACS applied materials interfaces, 11 (35), 31997-32007.
  • Wang, X., Li, C., Zhao, T., 2018. Fabrication and characterization of poly (melamine-formaldehyde)/silicon carbide hybrid microencapsulated phase change materials with enhanced thermal conductivity and light-heat performance. Solar Energy Materials and Solar Cells, 183, 82-91.
  • Wang, X., Zhang, C., Wang, K., Huang, Y., Chen, Z., 2021. Highly efficient photothermal conversion capric acid phase change microcapsule: Silicon carbide modified melamine urea formaldehyde. Journal of Colloid and Interface Science, 582, 30-40.
  • Wu, H.Y., Chen, R.T., Shao, Y.W., Qi, X.D., Yang, J.H., Wang, Y., 2019. Novel flexible phase change materials with mussel-inspired modification of melamine foam for simultaneous light-actuated shape memory and light-to-thermal energy storage capability. ACS Sustainable Chemistry & Engineering, 7, 13532–13542. Ye, W., Xin, J.H., Li, P., Lee, K.L.D. Kwong, T.L., 2006. Durable antibacterial finish on cotton fabric by using chitosan-based polymeric core-shell particles. Journal of Applied Polymer Science, 102 (2), 1787-1793.
  • Yuan, Z., Shi, X., Chen, K., 2024. Preparation and characterization of chitosan/ZnO-Ag composite microcapsules and their applications in solar energy harvesting and electromagnetic interference shielding. International Journal of Biological Macromolecules, 263, 130285.
  • Zhang, J., Zhang, Y., Wu, S., Ji, Y., Mao, Z., Wang, D., Xu, Z., Wei, Q, Feng, Q., 2024. Weavable coaxial phase change fibers concentrating thermal energy storage, photothermal conversion and thermochromic responsiveness toward smart thermoregulatory textiles. Chemical Engineering Journal, 483, 149281.
  • Zhou, Y., Liu, X.D., Sheng, D.K., Lin, C.H., Ji, F., Dong, L., Xu, S.B., Wu, H.H., Yang, Y.M., 2018. Polyurethane-based solid-solid phase change materials with in situ reduced graphene oxide for light-thermal energy conversion and storage. Chemical Engineering Journal, 338, 117–125. Zhu, Y., Liang, S., Wang, H., Zhang, K., Jia, X., Tian, C., Zhou, Y., Wang, J., 2016. Morphological control and thermal properties of nanoencapsulated n-octadecane phase change material with organosilica shell materials. Energy Conversion and Management, 119, 151-162.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Tekstil Bilimi, Tekstil Terbiyesi
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Müyesser Selda Tözüm 0000-0003-2887-5637

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 10 Nisan 2025
Kabul Tarihi 26 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 3

Kaynak Göster

APA Tözüm, M. S. (2025). MİKROKAPSÜL APLİKASYONU İLE FOTO-TERMAL DÖNÜŞÜM PERFORMANSI VE ISIL KONFOR SUNABİLEN KUMAŞLARIN GELİŞTİRİLMESİ. Mühendislik Bilimleri ve Tasarım Dergisi, 13(3), 911-920. https://doi.org/10.21923/jesd.1673209