Araştırma Makalesi
BibTex RIS Kaynak Göster

XCOM PROGRAMI VE DENEYSEL VERİLERLE SEKİZ AĞAÇ TÜRÜNÜN RADYASYON TUTUCULUK ÖZELLİKLERİNİN ARAŞTIRILMASI

Yıl 2025, Cilt: 13 Sayı: 3, 932 - 943, 30.09.2025

Öz

Bu çalışmada, 8 farklı ağaç türünün (T1–T8) radyasyon zayıflatma özellikleri deneysel olarak ve XCOM programı kullanılarak teorik olarak incelenmiştir. Numunelerin yoğunlukları ile elementel bileşimleri EDAX analizi ile belirlenmiş, 662 keV, 1173 keV ve 1332 keV enerji seviyelerinde gerçekleştirilen gamma spektroskopisi deneylerinde NaI (Tl) dedektörü kullanılmıştır. Deneysel verilerden elde edilen lineer zayıflama katsayısı (LAC) ile yoğunluk arasında güçlü korelasyonlar gözlenmiş, özellikle 662 keV’de bu ilişki oldukça belirgindir (R²=0.9195, eğim = 0.0792). En yüksek kütle soğurma katsayısı (MAC) değerleri 662 keV enerjisinde T3, T4 ve T5 numunelerinde ~0.085 olarak belirlenmiştir. Buna karşılık en düşük MAC değerleri T1 numunesinde (~0.045–0.060 arası) gözlenmiştir. Yarı değer tabakası (HVL) değerleri enerjiyle birlikte artış göstermiş; T1 numunesi tüm enerjilerde en yüksek HVL’ye sahip olup, 1173 keV’de yaklaşık 125 mm’ye ulaşmıştır. T4 ve T5 gibi türlerde HVL değerleri 10–30 mm aralığında kalmıştır. Onda bir değer tabakası (TVL) ve ortalama serbest yol (MFP) değerleri de benzer şekilde T1 için en yüksek seviyelerde ölçülmüş; 1332 keV’de TVL yaklaşık 420 mm, MFP ise 180 mm’ye ulaşmıştır. Diğer ağaç türlerinde bu değerler daha düşük kalmıştır. XCOM programı ile elde edilen teorik MAC değerleri ile deneysel veriler arasında oldukça yüksek uyum bulunmuştur (R²>0.98). Bu sonuçlar, yüksek yoğunluklu ağaç türlerinin düşük enerjili gamma fotonlarına karşı daha etkin zayıflatma sağladığını ve XCOM programının ahşap malzemelerin radyasyon koruma analizinde güvenilir bir araç olduğunu ortaya koymuştur.

Kaynakça

  • Abouhaswa, A.S., 2019. Synthesis, structure, optical and gamma radiation shielding properties of B2O3-PbO2-Bi2O3 glasses. Compos. B Eng. 172, 218–225.
  • Agar, O., 2019. An extensive investigation on gamma ray shielding features of Pd/ Ag-based alloys. Nucl. Eng. Technol. 51 (3), 853–859.
  • Akiyama, H., 1989. 1/10th scale model test of inner concrete structure composed of concrete filled steel bearing wall. In: Transactions of the 10th International Conference on Structural Mechanics in Reactor Technology.
  • Akkurt, I., Kilincarslan, S., Basyigit, C. (2009). The attenuation of gamma-rays by concretes produced with barite. Progress in Nuclear Energy, 51(1), 91–94. https://doi.org/10.1016/j.pnucene.2008.06.003.
  • Akkurt, I., Başyiğit, C., Akkaş, A., Kılınçarslan, Ş., Mavi, B., Günoğlu, K., 2012. Determination of some heavyweight aggregate half value layer thickness used for radiation shielding. Acta Physica Polonica A, 121(1), 138-140.
  • Akkurt, I., Başyigit, C., Kilincarslan, S., Beycioglu, A. 2010. Prediction of photon attenuation coefficients of heavy concrete by fuzzy logic. Journal of the Franklin Institute, 347(9), 1589-1597.
  • Akkurt, I., Emikönel, S., Akarslan, F., Günoğlu, K., Kilinçarslan, Ş., Üncü, I. 2015. Barite effect on radiation shielding properties of cotton-polyester fabric. Acta Physica Polonica A, 128(2B).
  • Al-Buriahi, M.S., Rammah, Y.S., 2019. Investigation of the physical properties and gamma-ray shielding capability of borate glasses containing PbO, Al 2 O 3 and Na2O. Appl. Phys. A 125 (10), 1–8.
  • Al-Buriahi, M.S., Rammah, Y.S., 2019. Electronic polarizability, dielectric, and gamma- ray shielding properties of some tellurite-based glasses. Appl. Phys. A 125 (10), 1–9.
  • Al-Buriahi, M.S., Tonguc, B.T., 2020. Mass attenuation coefficients, effective atomic numbers and electron densities of some contrast agents for computed tomography. Radiat. Phys. Chem. 166 (August 2019), 108507 https://doi.org/10.1016/j. radphyschem.2019.108507.
  • Al-Hadeethi, Y., Sayyed, M.I., 2020. X-ray attenuation features of some tellurite glasses evaluated at medical diagnostic energies. Appl. Math. Comput. 365, 124712.
  • Almatari, M., et al., 2019. Photon and neutron shielding characteristics of samarium doped lead alumino borate glasses containing barium, lithium and zinc oxides determined at medical diagnostic energies. Res. Phys. 12, 2123–2128.
  • Bootjomchai, C., et al., 2012. Gamma-ray shielding and structural properties of barium–bismuth–borosilicate glasses. Radiat. Phys. Chem. 81 (7), 785–790.
  • Cherkashina, N.I., Pavlenko, A.V.2018. Synthesis of polymer composite based on polyimide and Bi12SiO20 sillenite. Polym. Plast. Technol. Eng. 57 (18), 1923–1931.
  • Cherkashina, N.I., Pavlenko, V.I., Noskov, A.V.2019. Synthesis and property evaluations of highly filled polyimide composites under thermal cycling conditions from − 190 ◦C to +200 ◦C. Cryogenics 104, 102995. https://doi.org/10.1016/j. cryogenics.2019.102995.
  • D’Auria, F., Debrecin, N., Glaeser, H., 2017. Strengthening nuclear reactor safety and analysis. Nucl. Eng. Des. 324, 209–219.
  • El-Khayatt, A.M., Ali, A.M., Singh, V.P., 2014. Photon attenuation coefficients of Heavy-Metal Oxide glasses by MCNP code, XCOM program and experimental data: a comparison study. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 735, 207–212. https://doi.org/10.1016/j.nima.2013.09.027.
  • Ersundu, M.Ç., et al., 2019. Physical, mechanical and gamma-ray shielding properties of highly transparent ZnO-MoO3-TeO2 glasses. J. Non-Cryst. Solids 524, 119648.
  • Kaewjaeng, S., et al., 2012. Effect of BaO on optical, physical and radiation shielding properties of SiO2-B2O3-Al2O3-CaO-Na2O glasses system. Procedia Eng. 32, 1080–1086.
  • Kumar, A., et al., 2020. Experimental studies and Monte Carlo simulations on gamma ray shielding competence of (30+ x) PbO10WO3 10Na2O− 10MgO–(40-x) B2O3 glasses. Prog. Nucl. Energy 119, 103047.
  • Kurudirek, M., 2017. Heavy metal borate glasses: potential use for radiation shielding. J. Alloys Compd. 727, 1227–1236.
  • Mahmoud, K.A., et al., 2019. Investigation of radiation shielding properties for some building materials reinforced by basalt powder. In: AIP Conference Proceedings. AIP Publishing LLC, 20036.
  • Mahmoud, K.M., Rammah, Y.S., 2020. Investigation of gamma-ray shielding capability of glasses doped with Y, Gd, Nd, Pr and Dy rare earth using MCNP-5 code. Phys. B Condens. Matter 577, 411756.
  • Mann, K.S., Sidhu, G.S., 2012. Verification of some low-Z silicates as gamma-ray shielding materials. Ann. Nucl. Energy 40 (1), 241–252.
  • Manjunatha, H. C. (2013). A study on photon attenuation coefficients of different wood materials with different densities. Annals of Nuclear Energy, 62, 48–53. https://doi.org/10.1016/j.anucene.2013.07.019.
  • Mettler, F.A., 2012. Medical effects and risks of exposure to ionising radiation. J. Radiol. Prot. 32 (1), N9.
  • Rachniyom, W., et al., 2018. Effect of Bi2O3 on radiation shielding properties of glasses from coal fly ash. Mater. Today: Proc. 5 (6), 14046–14051.
  • Sadetzki, S., Mandelzweig, L., 2009. Childhood exposure to external ionising radiation and solid cancer risk. Br. J. Cancer 100 (7), 1021–1025.
  • Sayyed, M. I., Khandaker, M. U., Ali, M. A. B., & Bradley, D. A. (2018). Radiation shielding characteristics of clay materials with added iron slag for gamma radiation at 662 keV. Results in Physics, 9, 206–211. https://doi.org/10.1016/j.rinp.2018.01.034.
  • Sayyed, M.I., et al., 2018. Comparative study of gamma-ray shielding and elastic properties of BaO–Bi2O3–B2O3 and ZnO–Bi2O3–B2O3 glass systems. Mater. Chem. Phys. 217, 11–22.
  • Sayyed, M.I., et al., 2020. Evaluation of gamma-ray and neutron shielding features of heavy metals doped Bi2O3-BaO-Na2O-MgO-B2O3 glass systems. Prog. Nucl. Energy 118, 103118.
  • Shams, T., Eftekhar, M., Shirani, A., 2018. Investigation of gamma radiation attenuation in heavy concrete shields containing hematite and barite aggregates in multi-layered and mixed forms. Construct. Build. Mater. 182, 35–42.
  • Shamshad, L., et al., 2017. A comparative study of gadolinium based oxide and oxyfluoride glasses as low energy radiation shielding materials. Prog. Nucl. Energy 97, 53–59.
  • Sharma, A., et al., 2019. Simulation of shielding parameters for TeO2-WO3-GeO2 glasses using FLUKA code. Res. Phys. 13, 102199.
  • Sharma, R., et al., 2012. Effective atomic numbers for some calcium–strontium-borate glasses. Ann. Nucl. Energy 45, 144–149.
  • Shavers, M.R., et al., 2004. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters. Adv. Space Res. 34 (6), 1333–1337.
  • Singh, K.J., et al., 2008. Gamma-ray shielding and structural properties of PbO–SiO2 glasses. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 266 (6), 944–948.
  • Singh, V.P., Badiger, N.M., 2014. Energy absorption buildup factors, exposure buildup factors and Kerma for optically stimulated luminescence materials and their tissue equivalence for radiation dosimetry. Radiat. Phys. Chem. 104, 61–67.
  • Sodhi, K.S., et al., 2015. Clinical application of ‘Justification’and ‘Optimization’principle of ALARA in pediatric CT imaging:“How many children can be protected from unnecessary radiation? Eur. J. Radiol. 84 (9), 1752–1757.
  • Vano, E., 2011. Global view on radiation protection in medicine. Radiat. Protect. Dosim. 147 (1–2), 3–7.
  • Waly, E.-S.A., Bourham, M.A., 2015. Comparative study of different concrete composition as gamma-ray shielding materials. Ann. Nucl. Energy 85, 306–310.
  • Waly, E.-S.A., Fusco, M.A., Bourham, M.A., 2016. Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials. Ann. Nucl. Energy 96, 26–30.

INVESTIGATION OF RADIATION SHIELDING PROPERTIES OF EIGHT WOOD SPECIES WITH XCOM PROGRAM AND EXPERIMENTAL DATA

Yıl 2025, Cilt: 13 Sayı: 3, 932 - 943, 30.09.2025

Öz

In this study, radiation shielding properties of 8 different wood species (T1–T8) were investigated experimentally and theoretically using the XCOM program. The densities and elemental compositions of the samples were determined by EDAX analysis, and a NaI (Tl) detector was used in gamma spectroscopy experiments performed at energy levels of 662 keV, 1173 keV and 1332 keV. Strong correlations were observed between the linear attenuation coefficient (LAC) obtained from the experimental data and the density; this relationship was particularly evident at 662 keV (R² = 0.9195, slope = 0.0792). The highest mass attenuation coefficient (MAC) values were determined as ~0.085 at 662 keV in samples T3, T4 and T5. On the other hand, the lowest MAC values were observed in sample T1 (between ~0.045–0.060). The half-value layer (HVL) values increased with energy; Sample T1 had the highest HVL at all energies, reaching approximately 125 mm at 1173 keV. HVL values for species such as T4 and T5 remained in the range of 10–30 mm. Similarly, the tenth value layer (TVL) and mean free path (MFP) values were measured at the highest levels for T1; at 1332 keV, TVL reached approximately 420 mm and MFP reached 180 mm. These values were lower for other wood species. The theoretical MAC values obtained with the XCOM program were found to be in very good agreement with the experimental data (R² > 0.98). These results demonstrated that high-density wood species provide more effective attenuation against low-energy gamma photons and that the XCOM program is a reliable tool for the radiation protection analysis of wood materials.

Kaynakça

  • Abouhaswa, A.S., 2019. Synthesis, structure, optical and gamma radiation shielding properties of B2O3-PbO2-Bi2O3 glasses. Compos. B Eng. 172, 218–225.
  • Agar, O., 2019. An extensive investigation on gamma ray shielding features of Pd/ Ag-based alloys. Nucl. Eng. Technol. 51 (3), 853–859.
  • Akiyama, H., 1989. 1/10th scale model test of inner concrete structure composed of concrete filled steel bearing wall. In: Transactions of the 10th International Conference on Structural Mechanics in Reactor Technology.
  • Akkurt, I., Kilincarslan, S., Basyigit, C. (2009). The attenuation of gamma-rays by concretes produced with barite. Progress in Nuclear Energy, 51(1), 91–94. https://doi.org/10.1016/j.pnucene.2008.06.003.
  • Akkurt, I., Başyiğit, C., Akkaş, A., Kılınçarslan, Ş., Mavi, B., Günoğlu, K., 2012. Determination of some heavyweight aggregate half value layer thickness used for radiation shielding. Acta Physica Polonica A, 121(1), 138-140.
  • Akkurt, I., Başyigit, C., Kilincarslan, S., Beycioglu, A. 2010. Prediction of photon attenuation coefficients of heavy concrete by fuzzy logic. Journal of the Franklin Institute, 347(9), 1589-1597.
  • Akkurt, I., Emikönel, S., Akarslan, F., Günoğlu, K., Kilinçarslan, Ş., Üncü, I. 2015. Barite effect on radiation shielding properties of cotton-polyester fabric. Acta Physica Polonica A, 128(2B).
  • Al-Buriahi, M.S., Rammah, Y.S., 2019. Investigation of the physical properties and gamma-ray shielding capability of borate glasses containing PbO, Al 2 O 3 and Na2O. Appl. Phys. A 125 (10), 1–8.
  • Al-Buriahi, M.S., Rammah, Y.S., 2019. Electronic polarizability, dielectric, and gamma- ray shielding properties of some tellurite-based glasses. Appl. Phys. A 125 (10), 1–9.
  • Al-Buriahi, M.S., Tonguc, B.T., 2020. Mass attenuation coefficients, effective atomic numbers and electron densities of some contrast agents for computed tomography. Radiat. Phys. Chem. 166 (August 2019), 108507 https://doi.org/10.1016/j. radphyschem.2019.108507.
  • Al-Hadeethi, Y., Sayyed, M.I., 2020. X-ray attenuation features of some tellurite glasses evaluated at medical diagnostic energies. Appl. Math. Comput. 365, 124712.
  • Almatari, M., et al., 2019. Photon and neutron shielding characteristics of samarium doped lead alumino borate glasses containing barium, lithium and zinc oxides determined at medical diagnostic energies. Res. Phys. 12, 2123–2128.
  • Bootjomchai, C., et al., 2012. Gamma-ray shielding and structural properties of barium–bismuth–borosilicate glasses. Radiat. Phys. Chem. 81 (7), 785–790.
  • Cherkashina, N.I., Pavlenko, A.V.2018. Synthesis of polymer composite based on polyimide and Bi12SiO20 sillenite. Polym. Plast. Technol. Eng. 57 (18), 1923–1931.
  • Cherkashina, N.I., Pavlenko, V.I., Noskov, A.V.2019. Synthesis and property evaluations of highly filled polyimide composites under thermal cycling conditions from − 190 ◦C to +200 ◦C. Cryogenics 104, 102995. https://doi.org/10.1016/j. cryogenics.2019.102995.
  • D’Auria, F., Debrecin, N., Glaeser, H., 2017. Strengthening nuclear reactor safety and analysis. Nucl. Eng. Des. 324, 209–219.
  • El-Khayatt, A.M., Ali, A.M., Singh, V.P., 2014. Photon attenuation coefficients of Heavy-Metal Oxide glasses by MCNP code, XCOM program and experimental data: a comparison study. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 735, 207–212. https://doi.org/10.1016/j.nima.2013.09.027.
  • Ersundu, M.Ç., et al., 2019. Physical, mechanical and gamma-ray shielding properties of highly transparent ZnO-MoO3-TeO2 glasses. J. Non-Cryst. Solids 524, 119648.
  • Kaewjaeng, S., et al., 2012. Effect of BaO on optical, physical and radiation shielding properties of SiO2-B2O3-Al2O3-CaO-Na2O glasses system. Procedia Eng. 32, 1080–1086.
  • Kumar, A., et al., 2020. Experimental studies and Monte Carlo simulations on gamma ray shielding competence of (30+ x) PbO10WO3 10Na2O− 10MgO–(40-x) B2O3 glasses. Prog. Nucl. Energy 119, 103047.
  • Kurudirek, M., 2017. Heavy metal borate glasses: potential use for radiation shielding. J. Alloys Compd. 727, 1227–1236.
  • Mahmoud, K.A., et al., 2019. Investigation of radiation shielding properties for some building materials reinforced by basalt powder. In: AIP Conference Proceedings. AIP Publishing LLC, 20036.
  • Mahmoud, K.M., Rammah, Y.S., 2020. Investigation of gamma-ray shielding capability of glasses doped with Y, Gd, Nd, Pr and Dy rare earth using MCNP-5 code. Phys. B Condens. Matter 577, 411756.
  • Mann, K.S., Sidhu, G.S., 2012. Verification of some low-Z silicates as gamma-ray shielding materials. Ann. Nucl. Energy 40 (1), 241–252.
  • Manjunatha, H. C. (2013). A study on photon attenuation coefficients of different wood materials with different densities. Annals of Nuclear Energy, 62, 48–53. https://doi.org/10.1016/j.anucene.2013.07.019.
  • Mettler, F.A., 2012. Medical effects and risks of exposure to ionising radiation. J. Radiol. Prot. 32 (1), N9.
  • Rachniyom, W., et al., 2018. Effect of Bi2O3 on radiation shielding properties of glasses from coal fly ash. Mater. Today: Proc. 5 (6), 14046–14051.
  • Sadetzki, S., Mandelzweig, L., 2009. Childhood exposure to external ionising radiation and solid cancer risk. Br. J. Cancer 100 (7), 1021–1025.
  • Sayyed, M. I., Khandaker, M. U., Ali, M. A. B., & Bradley, D. A. (2018). Radiation shielding characteristics of clay materials with added iron slag for gamma radiation at 662 keV. Results in Physics, 9, 206–211. https://doi.org/10.1016/j.rinp.2018.01.034.
  • Sayyed, M.I., et al., 2018. Comparative study of gamma-ray shielding and elastic properties of BaO–Bi2O3–B2O3 and ZnO–Bi2O3–B2O3 glass systems. Mater. Chem. Phys. 217, 11–22.
  • Sayyed, M.I., et al., 2020. Evaluation of gamma-ray and neutron shielding features of heavy metals doped Bi2O3-BaO-Na2O-MgO-B2O3 glass systems. Prog. Nucl. Energy 118, 103118.
  • Shams, T., Eftekhar, M., Shirani, A., 2018. Investigation of gamma radiation attenuation in heavy concrete shields containing hematite and barite aggregates in multi-layered and mixed forms. Construct. Build. Mater. 182, 35–42.
  • Shamshad, L., et al., 2017. A comparative study of gadolinium based oxide and oxyfluoride glasses as low energy radiation shielding materials. Prog. Nucl. Energy 97, 53–59.
  • Sharma, A., et al., 2019. Simulation of shielding parameters for TeO2-WO3-GeO2 glasses using FLUKA code. Res. Phys. 13, 102199.
  • Sharma, R., et al., 2012. Effective atomic numbers for some calcium–strontium-borate glasses. Ann. Nucl. Energy 45, 144–149.
  • Shavers, M.R., et al., 2004. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters. Adv. Space Res. 34 (6), 1333–1337.
  • Singh, K.J., et al., 2008. Gamma-ray shielding and structural properties of PbO–SiO2 glasses. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 266 (6), 944–948.
  • Singh, V.P., Badiger, N.M., 2014. Energy absorption buildup factors, exposure buildup factors and Kerma for optically stimulated luminescence materials and their tissue equivalence for radiation dosimetry. Radiat. Phys. Chem. 104, 61–67.
  • Sodhi, K.S., et al., 2015. Clinical application of ‘Justification’and ‘Optimization’principle of ALARA in pediatric CT imaging:“How many children can be protected from unnecessary radiation? Eur. J. Radiol. 84 (9), 1752–1757.
  • Vano, E., 2011. Global view on radiation protection in medicine. Radiat. Protect. Dosim. 147 (1–2), 3–7.
  • Waly, E.-S.A., Bourham, M.A., 2015. Comparative study of different concrete composition as gamma-ray shielding materials. Ann. Nucl. Energy 85, 306–310.
  • Waly, E.-S.A., Fusco, M.A., Bourham, M.A., 2016. Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials. Ann. Nucl. Energy 96, 26–30.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapı Malzemeleri
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Yasemin Şimşek Türker 0000-0002-3080-0215

Şemsettin Kılınçarslan 0000-0001-8253-9357

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 14 Nisan 2025
Kabul Tarihi 25 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 3

Kaynak Göster

APA Şimşek Türker, Y., & Kılınçarslan, Ş. (2025). INVESTIGATION OF RADIATION SHIELDING PROPERTIES OF EIGHT WOOD SPECIES WITH XCOM PROGRAM AND EXPERIMENTAL DATA. Mühendislik Bilimleri ve Tasarım Dergisi, 13(3), 932-943.