Tel Ark Eklemeli İmalat Yöntemiyle Paslanmaz Çelik Silindirik Parçanın Üretimi ve Karakterizasyonu
Yıl 2023,
Cilt: 4 Sayı: 2, 24 - 32, 08.12.2023
Ercan Çağlar
,
Kürşat Uygar Altun
,
Yusuf Ayan
,
Nizamettin Kahraman
Öz
Tel ark eklemeli imalat (TAEİ) yönteminin kullanımı ve önemi son yıllarda giderek artmaktadır. Yöntemin avantajları bu ilerlemeyi destekleyen birer faktör olmuştur. Bu avantajlardan biri de piyasada bulunmayan veya standart olarak temin edilemeyen bir metal parçanın bu yöntemle üretilebilmesidir. Bu çalışmada örnek olarak TAEİ tekniği ile silindirik bir parça üretilmiştir. Nispeten orta büyüklükte olarak nitelendirilebilecek bu parçanın çapı yaklaşık 100 mm ve yüksekliği 120 mm’dir. Üretilen parçadan alınan numunelere makro yapı, çekme testi, eğme testi, mikroyapı ve mikrosertlik çalışmaları yapılmıştır. Makro yapı incelemelerinde parçada herhangi bir kusura rastlanmamıştır. Parçanın ortalama çekme dayanımı 548 MPa ve ortalama maksimum uzaması yaklaşık %39 olarak hesaplanmıştır. Mikroyapı çalışmalarında yapının ağırlıklı olarak östenit fazından oluştuğu, bununla birlikte δ ferrit fazını da içerdiği gözlemlenmiştir. Üretilen parçanın sertliği ortalama 212 HV olarak ölçülmüştür.
Destekleyen Kurum
TÜBİTAK
Proje Numarası
1919B012109830
Teşekkür
Bu çalışma TÜBİTAK tarafından 2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı kapsamında (Proje başvuru no: 1919B012109830) desteklenmiştir. Yazarlar ilgili kuruma teşekkür ederler.
Kaynakça
- 1. X. Xing et al., “Microstructure Optimization and Cracking Control of Additive Manufactured Bainite Steel by Gas Metal Arc Welding Technology,” J. of Materi Eng and Perform, vol. 28, no. 8, Art. no. 8, Aug. 2019, doi: 10.1007/s11665-019-04203-y.
- 2. Y. Zhang, F. Cheng, and S. Wu, “Improvement of pitting corrosion resistance of wire arc additive manufactured duplex stainless steel through post-manufacturing heat-treatment,” Materials Characterization, vol. 171, p. 110743, Jan. 2021, doi: 10.1016/j.matchar.2020.110743.
- 3. S. Li et al., “Comparative study on the microstructures and properties of wire+arc additively manufactured 5356 aluminium alloy with argon and nitrogen as the shielding gas,” Additive Manufacturing, vol. 34, p. 101206, Aug. 2020, doi: 10.1016/j.addma.2020.101206.
- 4. S. W. Williams, F. Martina, A. C. Addison, J. Ding, G. Pardal, and P. Colegrove, “Wire + Arc Additive Manufacturing,” Materials Science and Technology, vol. 32, no. 7, Art. no. 7, May 2016, doi: 10.1179/1743284715Y.0000000073.
- 5. R. D. Pütz, Y. Pratesa, L. Oster, R. Sharma, U. Reisgen, and D. Zander, “Microstructure and Corrosion Behavior of Functionally Graded Wire Arc Additive Manufactured Steel Combinations,” Steel Research Int., vol. 92, no. 12, Art. no. 12, Dec. 2021, doi: 10.1002/srin.202100387.
- 6. J. Gu et al., “The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al–6.3Cu alloy,” Materials Science and Engineering: A, vol. 651, pp. 18–26, Jan. 2016, doi: 10.1016/j.msea.2015.10.101.
- 7. G. G. Goviazin, A. Shirizly, and D. Rittel, “Static and dynamic mechanical properties of wire and arc additively manufactured SS316L and ER70S6,” Mechanics of Materials, vol. 164, p. 104108, Jan. 2022, doi: 10.1016/j.mechmat.2021.104108.
- 8. L. Palmeira Belotti, J. A. W. van Dommelen, M. G. D. Geers, C. Goulas, W. Ya, and J. P. M. Hoefnagels, “Microstructural characterisation of thick-walled wire arc additively manufactured stainless steel,” Journal of Materials Processing Technology, vol. 299, p. 117373, Jan. 2022, doi: 10.1016/j.jmatprotec.2021.117373.
- 9. R. Pramod, S. M. Kumar, B. Girinath, A. R. Kannan, N. P. Kumar, and N. S. Shanmugam, “Fabrication, characterisation, and finite element analysis of cold metal transfer–based wire and arc additive–manufactured aluminium alloy 4043 cylinder,” Weld World, vol. 64, no. 11, Art. no. 11, Nov. 2020, doi: 10.1007/s40194-020-00970-8.
- 10. F. Wang, S. Williams, P. Colegrove, and A. A. Antonysamy, “Microstructure and Mechanical Properties of Wire and Arc Additive Manufactured Ti-6Al-4V,” Metall and Mat Trans A, vol. 44, no. 2, Art. no. 2, Feb. 2013, doi: 10.1007/s11661-012-1444-6.
- 11. H. Zhang et al., “Fabricating Pyramidal Lattice Structures of 304 L Stainless Steel by Wire Arc Additive Manufacturing,” Materials, vol. 13, no. 16, Art. no. 16, Aug. 2020, doi: 10.3390/ma13163482.
- 12. A. Kumar and K. Maji, “Microstructure and Chemical Composition Analysis of Double Wire Arc Additive Manufactured Bimetallic Structure,” J. of Materi Eng and Perform, vol. 30, no. 7, Art. no. 7, Jul. 2021, doi: 10.1007/s11665-021-05819-9.
- 13. T. A. Rodrigues et al., “Effect of heat treatments on 316 stainless steel parts fabricated by wire and arc additive manufacturing : Microstructure and synchrotron X-ray diffraction analysis,” Additive Manufacturing, vol. 48, p. 102428, Dec. 2021, doi: 10.1016/j.addma.2021.102428.
- 14. B. P. Nagasai, S. Malarvizhi, and V. Balasubramanian, “Effect of welding processes on mechanical and metallurgical characteristics of carbon steel cylindrical components made by wire arc additive manufacturing (WAAM) technique,” CIRP Journal of Manufacturing Science and Technology, vol. 36, pp. 100–116, Jan. 2022, doi: 10.1016/j.cirpj.2021.11.005.
- 15. B. P. Nagasai, S. Malarvizhi, and V. Balasubramanian, “Mechanical properties and microstructural characteristics of wire arc additive manufactured 308 L stainless steel cylindrical components made by gas metal arc and cold metal transfer arc welding processes,” Journal of Materials Processing Technology, vol. 307, p. 117655, Sep. 2022, doi: 10.1016/j.jmatprotec.2022.117655.
- 16. L. Wang, J. Xue, and Q. Wang, “Correlation between arc mode, microstructure, and mechanical properties during wire arc additive manufacturing of 316L stainless steel,” Materials Science and Engineering: A, vol. 751, pp. 183–190, Mar. 2019, doi: 10.1016/j.msea.2019.02.078.
- 17. V. V, Sathiyamurthy S, P. J, Harsh Vardhan, S. S, and S. P. K, “Tensile, Hardness, XRD and Surface Vonmises Stress of 316 L Stainless Steel Built by Wire Arc Additive Manufacturing (WAAM),” JME, vol. 17, no. 3, pp. 098–103, Sep. 2022.
- 18. C. Wang, T. G. Liu, P. Zhu, Y. H. Lu, and T. Shoji, “Study on microstructure and tensile properties of 316L stainless steel fabricated by CMT wire and arc additive manufacturing,” Materials Science and Engineering: A, vol. 796, p. 140006, Oct. 2020, doi: 10.1016/j.msea.2020.140006.
- 19. D. Kumar, S. Jhavar, A. Arya, K. G. Prashanth, and S. Suwas, “Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L,” Int J Fract, vol. 235, no. 1, pp. 61–78, May 2022, doi: 10.1007/s10704-021-00574-3.
20. K. Yang, Q. Wang, Y. Qu, Y. Jiang, and Y. Bao, “Microstructure and Corrosion Resistance of Arc Additive Manufactured 316L Stainless Steel,” J. Wuhan Univ. Technol.-Mat. Sci. Edit., vol. 35, no. 5, Art. no. 5, Oct. 2020, doi: 10.1007/s11595-020-2339-9.
Fabrication and Characterization of a Stainless Steel Cylindrical Part by Wire Arc Additive Manufacturing Method
Yıl 2023,
Cilt: 4 Sayı: 2, 24 - 32, 08.12.2023
Ercan Çağlar
,
Kürşat Uygar Altun
,
Yusuf Ayan
,
Nizamettin Kahraman
Öz
The use and importance of the wire arc additive manufacturing (WAAM) method has been increasing in recent years. The advantages of the method have been a factor supporting this proceed. One of these advantages is that a metal part, which is not available in the market or cannot be supplied as a standard, can be produced by the method. In this study, as an example, a cylindrical part was produced with the WAAM technique. This part, which can be described as relatively medium-sized, had a diameter of approximately 100 mm and a height of 120 mm. Macrostructure, tensile test, bending test, microstructure and microhardness studies were carried out with the samples taken from the produced part. No defects were found in the part during the macrostructure examinations. The mean tensile strength of the part was calculated as about 548MPa and mean the elongation was about 39%. In the microstructure studies, it was observed that the structure mainly consists of the austenite phase, but also contains the δ ferrite phase. The hardness of the manufactured part was measured as 212 HV on average.
Proje Numarası
1919B012109830
Kaynakça
- 1. X. Xing et al., “Microstructure Optimization and Cracking Control of Additive Manufactured Bainite Steel by Gas Metal Arc Welding Technology,” J. of Materi Eng and Perform, vol. 28, no. 8, Art. no. 8, Aug. 2019, doi: 10.1007/s11665-019-04203-y.
- 2. Y. Zhang, F. Cheng, and S. Wu, “Improvement of pitting corrosion resistance of wire arc additive manufactured duplex stainless steel through post-manufacturing heat-treatment,” Materials Characterization, vol. 171, p. 110743, Jan. 2021, doi: 10.1016/j.matchar.2020.110743.
- 3. S. Li et al., “Comparative study on the microstructures and properties of wire+arc additively manufactured 5356 aluminium alloy with argon and nitrogen as the shielding gas,” Additive Manufacturing, vol. 34, p. 101206, Aug. 2020, doi: 10.1016/j.addma.2020.101206.
- 4. S. W. Williams, F. Martina, A. C. Addison, J. Ding, G. Pardal, and P. Colegrove, “Wire + Arc Additive Manufacturing,” Materials Science and Technology, vol. 32, no. 7, Art. no. 7, May 2016, doi: 10.1179/1743284715Y.0000000073.
- 5. R. D. Pütz, Y. Pratesa, L. Oster, R. Sharma, U. Reisgen, and D. Zander, “Microstructure and Corrosion Behavior of Functionally Graded Wire Arc Additive Manufactured Steel Combinations,” Steel Research Int., vol. 92, no. 12, Art. no. 12, Dec. 2021, doi: 10.1002/srin.202100387.
- 6. J. Gu et al., “The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al–6.3Cu alloy,” Materials Science and Engineering: A, vol. 651, pp. 18–26, Jan. 2016, doi: 10.1016/j.msea.2015.10.101.
- 7. G. G. Goviazin, A. Shirizly, and D. Rittel, “Static and dynamic mechanical properties of wire and arc additively manufactured SS316L and ER70S6,” Mechanics of Materials, vol. 164, p. 104108, Jan. 2022, doi: 10.1016/j.mechmat.2021.104108.
- 8. L. Palmeira Belotti, J. A. W. van Dommelen, M. G. D. Geers, C. Goulas, W. Ya, and J. P. M. Hoefnagels, “Microstructural characterisation of thick-walled wire arc additively manufactured stainless steel,” Journal of Materials Processing Technology, vol. 299, p. 117373, Jan. 2022, doi: 10.1016/j.jmatprotec.2021.117373.
- 9. R. Pramod, S. M. Kumar, B. Girinath, A. R. Kannan, N. P. Kumar, and N. S. Shanmugam, “Fabrication, characterisation, and finite element analysis of cold metal transfer–based wire and arc additive–manufactured aluminium alloy 4043 cylinder,” Weld World, vol. 64, no. 11, Art. no. 11, Nov. 2020, doi: 10.1007/s40194-020-00970-8.
- 10. F. Wang, S. Williams, P. Colegrove, and A. A. Antonysamy, “Microstructure and Mechanical Properties of Wire and Arc Additive Manufactured Ti-6Al-4V,” Metall and Mat Trans A, vol. 44, no. 2, Art. no. 2, Feb. 2013, doi: 10.1007/s11661-012-1444-6.
- 11. H. Zhang et al., “Fabricating Pyramidal Lattice Structures of 304 L Stainless Steel by Wire Arc Additive Manufacturing,” Materials, vol. 13, no. 16, Art. no. 16, Aug. 2020, doi: 10.3390/ma13163482.
- 12. A. Kumar and K. Maji, “Microstructure and Chemical Composition Analysis of Double Wire Arc Additive Manufactured Bimetallic Structure,” J. of Materi Eng and Perform, vol. 30, no. 7, Art. no. 7, Jul. 2021, doi: 10.1007/s11665-021-05819-9.
- 13. T. A. Rodrigues et al., “Effect of heat treatments on 316 stainless steel parts fabricated by wire and arc additive manufacturing : Microstructure and synchrotron X-ray diffraction analysis,” Additive Manufacturing, vol. 48, p. 102428, Dec. 2021, doi: 10.1016/j.addma.2021.102428.
- 14. B. P. Nagasai, S. Malarvizhi, and V. Balasubramanian, “Effect of welding processes on mechanical and metallurgical characteristics of carbon steel cylindrical components made by wire arc additive manufacturing (WAAM) technique,” CIRP Journal of Manufacturing Science and Technology, vol. 36, pp. 100–116, Jan. 2022, doi: 10.1016/j.cirpj.2021.11.005.
- 15. B. P. Nagasai, S. Malarvizhi, and V. Balasubramanian, “Mechanical properties and microstructural characteristics of wire arc additive manufactured 308 L stainless steel cylindrical components made by gas metal arc and cold metal transfer arc welding processes,” Journal of Materials Processing Technology, vol. 307, p. 117655, Sep. 2022, doi: 10.1016/j.jmatprotec.2022.117655.
- 16. L. Wang, J. Xue, and Q. Wang, “Correlation between arc mode, microstructure, and mechanical properties during wire arc additive manufacturing of 316L stainless steel,” Materials Science and Engineering: A, vol. 751, pp. 183–190, Mar. 2019, doi: 10.1016/j.msea.2019.02.078.
- 17. V. V, Sathiyamurthy S, P. J, Harsh Vardhan, S. S, and S. P. K, “Tensile, Hardness, XRD and Surface Vonmises Stress of 316 L Stainless Steel Built by Wire Arc Additive Manufacturing (WAAM),” JME, vol. 17, no. 3, pp. 098–103, Sep. 2022.
- 18. C. Wang, T. G. Liu, P. Zhu, Y. H. Lu, and T. Shoji, “Study on microstructure and tensile properties of 316L stainless steel fabricated by CMT wire and arc additive manufacturing,” Materials Science and Engineering: A, vol. 796, p. 140006, Oct. 2020, doi: 10.1016/j.msea.2020.140006.
- 19. D. Kumar, S. Jhavar, A. Arya, K. G. Prashanth, and S. Suwas, “Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L,” Int J Fract, vol. 235, no. 1, pp. 61–78, May 2022, doi: 10.1007/s10704-021-00574-3.
20. K. Yang, Q. Wang, Y. Qu, Y. Jiang, and Y. Bao, “Microstructure and Corrosion Resistance of Arc Additive Manufactured 316L Stainless Steel,” J. Wuhan Univ. Technol.-Mat. Sci. Edit., vol. 35, no. 5, Art. no. 5, Oct. 2020, doi: 10.1007/s11595-020-2339-9.